zoukankan      html  css  js  c++  java
  • Luogu 4721 【模板】分治 FFT

    还不会这题的多项式求逆的算法。

    发现每一项都是一个卷积的形式,那么我们可以使用$NTT$来加速,直接做是$O(n^2logn)$的,我们考虑如何加速转移。

    可以采用$cdq$分治的思想,对于区间$[l, r]$中的数,先计算出$[l, mid]$中的数对$[mid + 1, r]$中的数的贡献,然后直接累加到右边去。

    容易发现,这样子每一次需要用向量$[l,l + 1, l +  2, dots, mid]$卷上$g$中$[1, 2, dots, r - l]$。

    时间复杂度$O(nlog^2n)$,感觉这东西跑得并不慢鸭。

    Code:

    #include <cstdio>
    #include <cstring>
    using namespace std;
    typedef long long ll;
    
    const int N = 3e5 + 5;
    const ll P = 998244353LL;
    
    int n, lim, pos[N];
    ll f[N], g[N], a[N], b[N];
    
    template <typename T>
    inline void read(T &X) {
        X = 0; char ch = 0; T op = 1;
        for (; ch > '9'|| ch < '0'; ch = getchar())
            if (ch == '-') op = -1;
        for (; ch >= '0' && ch <= '9'; ch = getchar())
            X = (X << 3) + (X << 1) + ch - 48;
        X *= op;
    }
    
    template <typename T>
    inline void swap(T &x, T &y) {
        T t = x; x = y; y = t;
    }
    
    inline ll fpow(ll x, ll y) {
        ll res = 1LL;
        for (; y > 0; y >>= 1) {
            if (y & 1) res = res * x % P;
            x = x * x % P;
        }
        return res;
    }
    
    inline void prework(int len) {
        int l = 0;
        for (lim = 1; lim <= len; lim <<= 1, ++l);
        for (int i = 0; i < lim; i++)
            pos[i] = (pos[i >> 1] >> 1) | ((i & 1) << (l - 1));
    }
    
    inline void ntt(ll *c, int opt) {
        for (int i = 0; i < lim; i++)
            if (i < pos[i]) swap(c[i], c[pos[i]]);
        for (int i = 1; i < lim; i <<= 1) {
            ll wn = fpow(3, (P - 1) / (i << 1));
            if (opt == -1) wn = fpow(wn, P - 2);
            for (int len = i << 1, j = 0; j < lim; j += len) {
                ll w = 1;
                for (int k = 0; k < i; k++, w = w * wn % P) {
                    ll x = c[j + k], y = c[j + k + i] * w % P;
                    c[j + k] = (x + y) % P, c[j + k + i] =(x - y + P) % P;
                }
            }
        }
        
        if (opt == -1) {
            ll inv = fpow(lim, P - 2);
            for (int i = 0; i < lim; i++) c[i] = c[i] * inv % P;
        }
    }
    
    void solve(int l, int r) {
        if (l == r) {
            a[l] = (a[l] + b[l]) % P;
            return;
        }
        
        int mid = ((l + r) >> 1);
        solve(l, mid);
        
        prework(r - l + 1);
        for (int i = 0; i < lim; i++) g[i] = f[i] = 0;
        for (int i = l; i <= mid; i++) f[i - l] = a[i];
        for (int i = 1; i <= r - l; i++) g[i - 1] = b[i];
        ntt(f, 1), ntt(g, 1);
        for (int i = 0; i < lim; i++) f[i] = f[i] * g[i] % P;
        ntt(f, -1);
        
        for (int i = mid + 1; i <= r; i++) a[i] = (a[i] + f[i - l - 1]) % P;
        
        solve(mid + 1, r);
    }
    
    int main() {
        read(n); n--;
        for (int i = 1; i <= n; i++) read(b[i]);
        a[0] = 1;
        solve(1, n);
        
        for (int i = 0; i <= n; i++)
            printf("%lld%c", a[i], i == n ? '
    ' : ' ');
        
        return 0;    
    }
    View Code
  • 相关阅读:
    Mysql 索引原理《一》索引原理与慢查询2
    Mysql 索引原理《一》索引原理与慢查询1
    Mysql内置功能《六》流程控制
    Mysql内置功能《五》 函数
    Mysql内置功能《四》存储过程
    Mysql pymysql模块
    HDU2020 绝对值排序
    HDU2019 数列有序
    HDU2018 母牛的故事
    HDU2016 数据的交换输出
  • 原文地址:https://www.cnblogs.com/CzxingcHen/p/10197696.html
Copyright © 2011-2022 走看看