zoukankan      html  css  js  c++  java
  • WOJ 10 精英选拔

    神仙dp,膜Claris

    题意:给一个长度为$n$的数列,求出不超过k次交换后的最大连续子区间和。

    发现交换后的最优答案一定是这样的(0和2的长度可以为0)

                 0           (    1    )         2            

    答案是标号为1的区间和。

    那么就相当于在原数列中下标在0或2的数字可以放入1中,而原来下标在1的数可以拿出来到0或2。

    我们设$f_{i, 0/1/2, a, b}$表示现在到第$i$个数,现在划分到的集合已经属于$0/1/2$,其中$0/2$中的数有$a$个被放入1中,$1$中的数有$b$个放入了$0/2$中的最优答案,那么最后的答案$ans = max_{0 leq i leq k, 1leq s leq2}(f_{n, s, i, i})$

    然后题解里面就出现了转移方程显然这六个字……

    喂,转移方程不显然啊……

    对于每一个数有保留在原集合和放入$1/(0,2)$中两种放法。

    我们只关心有多少数被放入了1,因为这是最后的答案,那么i到i + 1应当可以直接转移,这中间还对应着集合的变化。

    对于要放入1的数,应当使$a$转移到$a + 1$

    对于从1中拿出来的数,应当使$b$转移到$b + 1$

    具体还是参照代码实现吧(感觉还是和没说一样),时间复杂度$O(nk^{2})$,在$k$较小的时候有比较优秀的表现。

    Code:

    #include <cstdio>
    #include <cstring>
    using namespace std;
    typedef long long ll;
    
    const int N = 1e4 + 5;
    const int M = 12;
    const ll inf = (ll) 1 << 60;
    
    int n, m, d[N];
    ll f[N][3][M][M];
    
    inline void read(int &X) {
        X = 0;
        char ch = 0;
        int op = 1;
        for(; ch > '9' || ch < '0'; ch = getchar())
            if(ch == '-') op = -1;
        for(; ch >= '0' && ch <= '9'; ch = getchar())
            X = (X << 3) + (X << 1) + ch - 48;
        X *= op;
    }
    
    template <typename T>
    inline void chkMax(T &x, T y) {
        if(y > x) x = y;
    }
    
    int main() {
    //    freopen("btsc6.in", "r", stdin);
        
        scanf("%d%d", &n, &m);
        for(int i = 1; i <= n; i++) scanf("%d", &d[i]);;
        
        for(int i = 0; i <= n; i++)
            for(int t = 0; t < 3; t++)
                for(int a = 0; a <= m; a++)
                    for(int b = 0; b <= m; b++)
                        f[i][t][a][b] = -inf;
        f[0][0][0][0] = 0LL;
        
        for(int i = 0; i < n; i++)
            for(int a = 0; a <= m; a++) {
                if(a < m) chkMax(f[i + 1][0][a + 1][0], f[i][0][a][0] + d[i + 1]);
                chkMax(f[i + 1][0][a][0], f[i][0][a][0]);
                if(m >= 1) chkMax(f[i + 1][1][a][1], f[i][0][a][0]);
                chkMax(f[i + 1][1][a][0], f[i][0][a][0] + d[i + 1]); 
            }
        for(int i = 0; i < n; i++)
            for(int a = 0; a <= m; a++)
                for(int b = 0; b <= m; b++) {
                    if(b < m) chkMax(f[i + 1][1][a][b + 1], f[i][1][a][b]);
                    chkMax(f[i + 1][1][a][b], f[i][1][a][b] + d[i + 1]);
                    if(a < m) chkMax(f[i + 1][2][a + 1][b], f[i][1][a][b] + d[i + 1]);
                    chkMax(f[i + 1][2][a][b], f[i][1][a][b]);
                }
        for(int i = 0; i < n; i++)
            for(int a = 0; a <= m; a++)
                for(int b = a; b <= m; b++) {
                    if(a < m) chkMax(f[i + 1][2][a + 1][b], f[i][2][a][b] + d[i + 1]);
                    chkMax(f[i + 1][2][a][b], f[i][2][a][b]);
                }
        
        ll ans = 0LL;
        for(int i = 0; i <= m; i++) {
            chkMax(ans, f[n][1][i][i]);
            chkMax(ans, f[n][2][i][i]);
        }
        printf("%lld
    ", ans);
        
        return 0;
    }
    View Code
  • 相关阅读:
    Java基础之IO流,使用File类以树形结构打印指定文件目录
    Java基础之IO流,以字节流的方式操作读写文件FileOutputStream和FileInputStream的使用
    Java基础之IO流,自定义字节流缓冲区装饰类(模仿)
    Java基础之IO流,转换流应用InputStreamReader,OutputStreamWriter
    碰撞处理游戏的原型
    flash中物体运动基础之六方向与角度
    flash中物体运动基础之七碰撞处理
    推导坐标旋转公式
    flash中物体运动基础之一匀速运动
    flash中物体运动基础之五障碍物
  • 原文地址:https://www.cnblogs.com/CzxingcHen/p/9492199.html
Copyright © 2011-2022 走看看