披着数论题外衣的数位dp。
相当于数一数$[1,n]$范围内$1$的个数是$1,2,3,4,...log(n)$的数各有多少个,直接在二进制下数位dp。
然而我比较sb地把(1e7 + 7)当成了质数,其实数出来的数是要模$phi(p)$的,然而数出来的数绝对不会超过$n$。
时间复杂度$O(log^{4}n + sqrt{P})$。
Code:
#include <cstdio> #include <cstring> using namespace std; typedef long long ll; const int N = 65; const ll P = 1e7 + 7; int len, bit[N]; ll f[N][N], phiP; inline ll pow(ll x, ll y) { ll res = 1LL; for(; y > 0; y >>= 1) { if(y & 1) res = res * x % P; x = x * x % P; } return res; } ll dfs(int pos, int cnt, bool lead, bool lim, int cur) { if(pos == 0) return (cnt == cur); if(!lead && !lim && f[pos][cnt] != -1) return f[pos][cnt]; ll res = 0LL; int num = lim ? bit[pos] : 1; for(int i = 0; i <= num; i++) res = (res + dfs(pos - 1, cnt + (i == 1), lead && (i == 0), lim && (i == bit[pos]), cur)) % phiP; if(!lim && !lead) f[pos][cnt] = res; return res; } inline ll solve(int k) { memset(f, -1, sizeof(f)); ll res = dfs(len, 0, 1, 1, k); return res; } inline ll getPhi(ll now) { ll res = now, tmp = now; for(int i = 2; i * i <= now; i++) if(tmp % i == 0) { res = res / i * (i - 1); for(; tmp % i == 0; tmp /= i); } if(tmp != 1) res = res / tmp * (tmp - 1); return res; } int main() { phiP = getPhi(P); // printf("%lld ", phiP); ll n; scanf("%lld", &n); len = 0; for(ll tmp = n; tmp > 0; tmp >>= 1) bit[++len] = (tmp & 1); ll ans = 1LL; for(int i = 1; i <= len; i++) ans = ans * pow(i, solve(i) % phiP) % P; printf("%lld ", ans); return 0; }