zoukankan      html  css  js  c++  java
  • Luogu 3312 [SDOI2014]数表

    在这一篇里把所有的套路写全方便自己之后复习。

    首先是一个小学生数学:$a$整除$b$ $ = $  $frac{b}{a}$

    也就是说这题中格子$(i, j)$的值就是既能被$i$整除又能被$j$整除的所有自然数的和。

    小学数学没学好……

    那么思考一下就能列出本题的式子:

          $sum_{i = 1}^{n}sum_{j = 1}^{m}f(gcd(i, j))$       假设$n leq m$并且$f(gcd(i, j)) leq a$

    $f(i)$表示$i$的约数和

    发现$a$的限制十分讨厌,先不考虑它把式子推出来。

    先枚举$d$

          $sum_{d = 1}^{n}f(d)sum_{i = 1}^{n}sum_{j = 1}^{m}[gcd(i, j) == d]$

    后面直接枚举$d$的倍数

          $sum_{d = 1}^{n}f(d)sum_{i = 1}^{left lfloor frac{n}{d} ight floor}sum_{j = 1}^{left lfloor frac{m}{d} ight floor}[gcd(i, j) == 1]$

    在这里可以把$[gcd(i, j) == 1]$进行单位元代换了

          $sum_{d = 1}^{n}f(d)sum_{i = 1}^{left lfloor frac{n}{d} ight floor}sum_{j = 1}^{left lfloor frac{m}{d} ight floor}sum_{t | gcd(i, j)}mu (t)$

    枚举$t$

          $sum_{d = 1}^{n}f(d)sum_{t = 1}^{left lfloor frac{n}{d} ight floor}mu (t)sum_{i = 1}^{left lfloor frac{n}{d} ight floor}sum_{j = 1}^{left lfloor frac{m}{d} ight floor}[t|gcd(i, j)]$

    后面直接枚举$t$的倍数

          $sum_{d = 1}^{n}f(d)sum_{t = 1}^{left lfloor frac{n}{d} ight floor}mu (t)left lfloor frac{n}{td} ight floorleft lfloor frac{m}{td} ight floor$

    枚举$T = dt$

          $sum_{T = 1}^{n}left lfloor frac{n}{T} ight floorleft lfloor frac{m}{T} ight floorsum_{d | T}mu (frac{T}{d})f(d)$

    记$h(T) = sum_{d | T}mu (frac{T}{d})f(d)$

          $sum_{T = 1}^{n}left lfloor frac{n}{T} ight floorleft lfloor frac{m}{T} ight floor h(T)$

    $h(i)$显然可以线性筛,如果不考虑$a$的情况下已经可以整除分块$sqrt{n}$求解了。

    现在考虑$a$的限制,发现只有当$f(i) leq a$的时候才会对答案产生贡献,我们可以将所有询问离线,按照$a$从小到大排序,然后写一个支持单点修改区间查询的数据结构来做这个产生贡献的$h(i)$的前缀和的计算。

    当然是常数小又好写的$bit$啦。

    时间复杂度$O(qsqrt{n}log MaxN + MaxNlogMaxN)$。

    在本题中取模只要让$int$自然溢出,最后再& $2^{31} - 1$。

    Code:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    typedef pair <int, int> pin;
    
    const int N = 1e5 + 5;
    const int M = 2e4 + 5;
    
    int qn, maxn = 0, pCnt = 0, pri[N], low[N], mu[N], d[N];
    bool np[N];
    pin f[N];
    
    struct Querys {
        int n, m, r, id, ans;
    } q[M];
    
    bool cmp(const Querys &x, const Querys &y) {
        return x.r < y.r;
    }
    
    inline void read(int &X) {
        X = 0; char ch = 0; int op = 1;
        for(; ch > '9' || ch < '0'; ch = getchar())
            if(ch == '-') op = -1;
        for(; ch >= '0' && ch <= '9'; ch = getchar())
            X = (X << 3) + (X << 1) + ch - 48;
        X *= op;
    }
    
    inline void chkMax(int &x, int y) {
        if(y > x) x = y;
    }
    
    inline int min(int x, int y) {
        return x > y ? y : x;
    } 
    
    inline void sieve() {
        mu[1] = d[1] = 1;
        for(int i = 2; i <= maxn; i++) {
            if(!np[i]) pri[++pCnt] = i, mu[i] = -1, d[i] = 1 + i, low[i] = i; 
            for(int j = 1; j <= pCnt && pri[j] * i <= maxn; j++) {
                np[i * pri[j]] = 1;
                if(i % pri[j] == 0) {
                    low[i * pri[j]] = low[i] * pri[j];
                    mu[i * pri[j]] = 0;
                    if(low[i] == i) d[i * pri[j]] = d[i] * pri[j] + 1;
                    else d[i * pri[j]] = d[i / low[i]] * d[pri[j] * low[i]];
                    break;
                }
                low[i * pri[j]] = pri[j];
                mu[i * pri[j]] = -mu[i];
                d[i * pri[j]] = d[i] * d[pri[j]];
            }
        }
        
    /*    for(int i = 1; i <= 20; i++)
            printf("%d ", mu[i]);
        printf("
    ");
        for(int i = 1; i <= 20; i++)
            printf("%d ", d[i]);
        printf("
    ");    */
        
        for(int i = 1; i <= maxn; i++) 
            f[i].first = d[i], f[i].second = i;
        sort(f + 1, f + 1 + maxn);
    }
    
    namespace BinaryIndexTree {
        int s[N];
        
        #define lowbit(p) (p & (-p))
        
        inline void modify(int p, int v) {
            for(; p <= maxn; p += lowbit(p))
                s[p] += v;
        }
        
        inline int query(int p) {
            int res = 0;
            for(; p > 0; p -= lowbit(p))
                res += s[p];
            return res;
        } 
        
    } using namespace BinaryIndexTree;
    
    inline void solve() {
        sort(q + 1, q + 1 + qn, cmp);
        int now = 0; 
        for(int i = 1; i <= qn; i++) {
            int rep = min(q[i].n, q[i].m), res = 0;
            
            for(; now + 1 <= maxn && f[now + 1].first <= q[i].r; ) {
                ++now;
                for(int j = f[now].second; j <= maxn; j += f[now].second)
                    modify(j, f[now].first * mu[j / f[now].second]);
            }
            
            for(int l = 1, r; l <= rep; l = r + 1) {
                r = min((q[i].n / (q[i].n / l)), (q[i].m / (q[i].m / l)));
                res += (q[i].n / l) * (q[i].m / l) * (query(r) - query(l - 1));
            }
            q[q[i].id].ans = res;
        }
    }
    
    int main() {
        read(qn);
        for(int i = 1; i <= qn; i++) {
            read(q[i].n), read(q[i].m), read(q[i].r);
            q[i].id = i;
            chkMax(maxn, q[i].n), chkMax(maxn, q[i].m);
        }        
        
        sieve();    
        solve();
        
        for(int i = 1; i <= qn; i++)
            printf("%d
    ", q[i].ans & (0x7fffffff));
        return 0;
    }
    View Code
  • 相关阅读:
    BZOJ1864: [Zjoi2006]三色二叉树
    2019牛客全国多校训练四 I题 string (SAM+PAM)
    2019杭电多校第二场
    HDU5919 Sequence II(主席树)
    2019牛客全国多校训练三 题解
    2019牛客多校第二场
    2019 杭电多校第一场 题解
    2019 牛客全国多校一
    POJ3261 Milk Patterns(后缀数组)
    POJ1743 Musical Theme (后缀数组 & 后缀自动机)最大不重叠相似子串
  • 原文地址:https://www.cnblogs.com/CzxingcHen/p/9651248.html
Copyright © 2011-2022 走看看