在这一篇里把所有的套路写全方便自己之后复习。
首先是一个小学生数学:$a$整除$b$ $ = $ $frac{b}{a}$
也就是说这题中格子$(i, j)$的值就是既能被$i$整除又能被$j$整除的所有自然数的和。
小学数学没学好……
那么思考一下就能列出本题的式子:
$sum_{i = 1}^{n}sum_{j = 1}^{m}f(gcd(i, j))$ 假设$n leq m$并且$f(gcd(i, j)) leq a$
$f(i)$表示$i$的约数和
发现$a$的限制十分讨厌,先不考虑它把式子推出来。
先枚举$d$
$sum_{d = 1}^{n}f(d)sum_{i = 1}^{n}sum_{j = 1}^{m}[gcd(i, j) == d]$
后面直接枚举$d$的倍数
$sum_{d = 1}^{n}f(d)sum_{i = 1}^{left lfloor frac{n}{d} ight floor}sum_{j = 1}^{left lfloor frac{m}{d} ight floor}[gcd(i, j) == 1]$
在这里可以把$[gcd(i, j) == 1]$进行单位元代换了
$sum_{d = 1}^{n}f(d)sum_{i = 1}^{left lfloor frac{n}{d} ight floor}sum_{j = 1}^{left lfloor frac{m}{d} ight floor}sum_{t | gcd(i, j)}mu (t)$
枚举$t$
$sum_{d = 1}^{n}f(d)sum_{t = 1}^{left lfloor frac{n}{d} ight floor}mu (t)sum_{i = 1}^{left lfloor frac{n}{d} ight floor}sum_{j = 1}^{left lfloor frac{m}{d} ight floor}[t|gcd(i, j)]$
后面直接枚举$t$的倍数
$sum_{d = 1}^{n}f(d)sum_{t = 1}^{left lfloor frac{n}{d} ight floor}mu (t)left lfloor frac{n}{td} ight floorleft lfloor frac{m}{td} ight floor$
枚举$T = dt$
$sum_{T = 1}^{n}left lfloor frac{n}{T} ight floorleft lfloor frac{m}{T} ight floorsum_{d | T}mu (frac{T}{d})f(d)$
记$h(T) = sum_{d | T}mu (frac{T}{d})f(d)$
$sum_{T = 1}^{n}left lfloor frac{n}{T} ight floorleft lfloor frac{m}{T} ight floor h(T)$
$h(i)$显然可以线性筛,如果不考虑$a$的情况下已经可以整除分块$sqrt{n}$求解了。
现在考虑$a$的限制,发现只有当$f(i) leq a$的时候才会对答案产生贡献,我们可以将所有询问离线,按照$a$从小到大排序,然后写一个支持单点修改区间查询的数据结构来做这个产生贡献的$h(i)$的前缀和的计算。
当然是常数小又好写的$bit$啦。
时间复杂度$O(qsqrt{n}log MaxN + MaxNlogMaxN)$。
在本题中取模只要让$int$自然溢出,最后再& $2^{31} - 1$。
Code:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef pair <int, int> pin; const int N = 1e5 + 5; const int M = 2e4 + 5; int qn, maxn = 0, pCnt = 0, pri[N], low[N], mu[N], d[N]; bool np[N]; pin f[N]; struct Querys { int n, m, r, id, ans; } q[M]; bool cmp(const Querys &x, const Querys &y) { return x.r < y.r; } inline void read(int &X) { X = 0; char ch = 0; int op = 1; for(; ch > '9' || ch < '0'; ch = getchar()) if(ch == '-') op = -1; for(; ch >= '0' && ch <= '9'; ch = getchar()) X = (X << 3) + (X << 1) + ch - 48; X *= op; } inline void chkMax(int &x, int y) { if(y > x) x = y; } inline int min(int x, int y) { return x > y ? y : x; } inline void sieve() { mu[1] = d[1] = 1; for(int i = 2; i <= maxn; i++) { if(!np[i]) pri[++pCnt] = i, mu[i] = -1, d[i] = 1 + i, low[i] = i; for(int j = 1; j <= pCnt && pri[j] * i <= maxn; j++) { np[i * pri[j]] = 1; if(i % pri[j] == 0) { low[i * pri[j]] = low[i] * pri[j]; mu[i * pri[j]] = 0; if(low[i] == i) d[i * pri[j]] = d[i] * pri[j] + 1; else d[i * pri[j]] = d[i / low[i]] * d[pri[j] * low[i]]; break; } low[i * pri[j]] = pri[j]; mu[i * pri[j]] = -mu[i]; d[i * pri[j]] = d[i] * d[pri[j]]; } } /* for(int i = 1; i <= 20; i++) printf("%d ", mu[i]); printf(" "); for(int i = 1; i <= 20; i++) printf("%d ", d[i]); printf(" "); */ for(int i = 1; i <= maxn; i++) f[i].first = d[i], f[i].second = i; sort(f + 1, f + 1 + maxn); } namespace BinaryIndexTree { int s[N]; #define lowbit(p) (p & (-p)) inline void modify(int p, int v) { for(; p <= maxn; p += lowbit(p)) s[p] += v; } inline int query(int p) { int res = 0; for(; p > 0; p -= lowbit(p)) res += s[p]; return res; } } using namespace BinaryIndexTree; inline void solve() { sort(q + 1, q + 1 + qn, cmp); int now = 0; for(int i = 1; i <= qn; i++) { int rep = min(q[i].n, q[i].m), res = 0; for(; now + 1 <= maxn && f[now + 1].first <= q[i].r; ) { ++now; for(int j = f[now].second; j <= maxn; j += f[now].second) modify(j, f[now].first * mu[j / f[now].second]); } for(int l = 1, r; l <= rep; l = r + 1) { r = min((q[i].n / (q[i].n / l)), (q[i].m / (q[i].m / l))); res += (q[i].n / l) * (q[i].m / l) * (query(r) - query(l - 1)); } q[q[i].id].ans = res; } } int main() { read(qn); for(int i = 1; i <= qn; i++) { read(q[i].n), read(q[i].m), read(q[i].r); q[i].id = i; chkMax(maxn, q[i].n), chkMax(maxn, q[i].m); } sieve(); solve(); for(int i = 1; i <= qn; i++) printf("%d ", q[i].ans & (0x7fffffff)); return 0; }