题目链接:http://poj.org/problem?id=3074
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 10451 | Accepted: 3776 |
Description
In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller 3 × 3 subgrids. For example,
. | 2 | 7 | 3 | 8 | . | . | 1 | . |
. | 1 | . | . | . | 6 | 7 | 3 | 5 |
. | . | . | . | . | . | . | 2 | 9 |
3 | . | 5 | 6 | 9 | 2 | . | 8 | . |
. | . | . | . | . | . | . | . | . |
. | 6 | . | 1 | 7 | 4 | 5 | . | 3 |
6 | 4 | . | . | . | . | . | . | . |
9 | 5 | 1 | 8 | . | . | . | 7 | . |
. | 8 | . | . | 6 | 5 | 3 | 4 | . |
Given some of the numbers in the grid, your goal is to determine the remaining numbers such that the numbers 1 through 9 appear exactly once in (1) each of nine 3 × 3 subgrids, (2) each of the nine rows, and (3) each of the nine columns.
Input
The input test file will contain multiple cases. Each test case consists of a single line containing 81 characters, which represent the 81 squares of the Sudoku grid, given one row at a time. Each character is either a digit (from 1 to 9) or a period (used to indicate an unfilled square). You may assume that each puzzle in the input will have exactly one solution. The end-of-file is denoted by a single line containing the word “end”.
Output
For each test case, print a line representing the completed Sudoku puzzle.
Sample Input
.2738..1..1...6735.......293.5692.8...........6.1745.364.......9518...7..8..6534. ......52..8.4......3...9...5.1...6..2..7........3.....6...1..........7.4.......3. end
Sample Output
527389416819426735436751829375692184194538267268174593643217958951843672782965341 416837529982465371735129468571298643293746185864351297647913852359682714128574936
Source
题解:
Dancing Links博客(来自万仓一黍 )
Dancing Links的一些特点:
1.矩阵中每个元素的值只能是0或1(在实际操作中只记录1)。
2.行代表着放置情况, 列代表着约束条件。其中矩阵中的行和列的编号从1开始。
3.选择若干行,使得其满足所有约束条件。
对于此题:
1.行:9*9*9,表明有9*9个格子,每个格子有9中情况。
2.列:9*9*4,首先每个格子能且仅能放1个数字,其次每一行的九个数字能且仅能被放一次, 再者列如行者,最后每个九宫格的九个数字能且仅能被放一次。
3.所以构成了(9*9*9) * (9*9*4)的矩阵,然后直接套模板。
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <vector> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 #define ms(a,b) memset((a),(b),sizeof((a))) 13 using namespace std; 14 typedef long long LL; 15 const int N = 9; 16 const int MaxN = N*N*N+10; 17 const int MaxM = N*N*4+10; 18 const int maxnode = MaxN*4 + MaxM + 10; 19 20 char g[MaxN]; 21 struct DLX //矩阵的行和列是从1开始的 22 { 23 int n, m, size; //size为结点数 24 int U[maxnode], D[maxnode], L[maxnode], R[maxnode], Row[maxnode], Col[maxnode]; 25 int H[MaxN], S[MaxM]; //H为每一行的头结点,但不参与循环。S为每一列的结点个数 26 int ansd, ans[MaxN]; 27 28 void init(int _n, int _m) //m为列 29 { 30 n = _n; 31 m = _m; 32 for(int i = 0; i<=m; i++) //初始化列的头结点 33 { 34 S[i] = 0; 35 U[i] = D[i] = i; 36 L[i] = i-1; 37 R[i] = i+1; 38 } 39 R[m] = 0; L[0] = m; 40 size = m; 41 for(int i = 1; i<=n; i++) H[i] = -1; //初始化行的头结点 42 } 43 44 void Link(int r, int c) 45 { 46 size++; //类似于前向星 47 Col[size] = c; 48 Row[size] = r; 49 S[Col[size]]++; 50 D[size] = D[c]; 51 U[D[c]] = size; 52 U[size] = c; 53 D[c] = size; 54 if(H[r]==-1) H[r] = L[size] = R[size] = size; //当前行为空 55 else //当前行不为空: 头插法,无所谓顺序,因为Row、Col已经记录了位置 56 { 57 R[size] = R[H[r]]; 58 L[R[H[r]]] = size; 59 L[size] = H[r]; 60 R[H[r]] = size; 61 } 62 } 63 64 void remove(int c) //c是列的编号, 不是结点的编号 65 { 66 L[R[c]] = L[c]; R[L[c]] = R[c]; //在列的头结点的循环队列中, 越过列c 67 for(int i = D[c]; i!=c; i = D[i]) 68 for(int j = R[i]; j!=i; j = R[j]) 69 { 70 //被删除结点的上下结点仍然有记录 71 U[D[j]] = U[j]; 72 D[U[j]] = D[j]; 73 S[Col[j]]--; 74 } 75 } 76 77 void resume(int c) 78 { 79 L[R[c]] = R[L[c]] = c; 80 for(int i = U[c]; i!=c; i = U[i]) 81 for(int j = L[i]; j!=i; j = L[j]) 82 { 83 U[D[j]] = D[U[j]] = j; 84 S[Col[j]]++; 85 } 86 } 87 88 bool Dance(int d) 89 { 90 if(R[0]==0) 91 { 92 for(int i = 0; i<d; i++) g[(ans[i]-1)/9] = (ans[i]-1)%9 + '1'; 93 for(int i = 0; i<N*N; i++) printf("%c", g[i]); 94 printf(" "); 95 return true; 96 } 97 98 int c = R[0]; 99 for(int i = R[0]; i!=0; i = R[i]) //挑结点数最少的那一列,否则会超时,那为什么呢? 100 if(S[i]<S[c]) 101 c = i; 102 103 remove(c); 104 for(int i = D[c]; i!=c; i = D[i]) 105 { 106 ans[d] = Row[i]; 107 for(int j = R[i]; j!=i; j = R[j]) remove(Col[j]); 108 if(Dance(d+1)) return true; 109 for(int j = L[i]; j!=i; j = L[j]) resume(Col[j]); 110 } 111 resume(c); 112 return false; 113 } 114 }; 115 116 //i、j从0开始,代表着位置; k从1开始,代表着数字 117 void place(int &r, int &c1, int &c2,int &c3, int &c4, int i, int j, int k) 118 { 119 //c1为每个格子一个数, c2为行, c3为列, c4为九宫格 120 r = (i*N+j)*N+k; c1 = i*N+j+1; c2 = N*N+i*N+k; 121 c3 = N*N*2+j*N+k; c4 = N*N*3+((i/3)*3+(j/3))*N+k; 122 } 123 124 DLX dlx; 125 int main() 126 { 127 while(scanf("%s", g) && strcmp(g,"end") ) 128 { 129 dlx.init(N*N*N, N*N*4); 130 int r, c1, c2, c3,c4; 131 for(int i = 0; i<N; i++) 132 for(int j = 0; j<N; j++) 133 for(int k = 1; k<=N; k++) 134 if(g[i*N+j]=='.' || g[i*N+j]=='0'+k) 135 { 136 place(r,c1,c2,c3,c4,i,j,k); //获取位置 137 dlx.Link(r,c1); //加入到矩阵中, 下同 138 dlx.Link(r,c2); 139 dlx.Link(r,c3); 140 dlx.Link(r,c4); 141 } 142 dlx.Dance(0); //一起摇摆 143 } 144 return 0; 145 }