zoukankan      html  css  js  c++  java
  • HDU1560 DNA sequence —— IDA*算法

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1560


    DNA sequence

    Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2999    Accepted Submission(s): 1462

    Problem Description
    The twenty-first century is a biology-technology developing century. We know that a gene is made of DNA. The nucleotide bases from which DNA is built are A(adenine), C(cytosine), G(guanine), and T(thymine). Finding the longest common subsequence between DNA/Protein sequences is one of the basic problems in modern computational molecular biology. But this problem is a little different. Given several DNA sequences, you are asked to make a shortest sequence from them so that each of the given sequence is the subsequence of it.

    For example, given "ACGT","ATGC","CGTT" and "CAGT", you can make a sequence in the following way. It is the shortest but may be not the only one.

     
    Input
    The first line is the test case number t. Then t test cases follow. In each case, the first line is an integer n ( 1<=n<=8 ) represents number of the DNA sequences. The following k lines contain the k sequences, one per line. Assuming that the length of any sequence is between 1 and 5.
     
    Output
    For each test case, print a line containing the length of the shortest sequence that can be made from these sequences.
     
    Sample Input
    1 4 ACGT ATGC CGTT CAGT
     
    Sample Output
    8
     
    Author
    LL
     
    Source




    题解:

    一开始以为是直接用回溯的方法,结果TLE。看了题解是用IDA*(迭代加深搜),其实自己不太了解迭代加深搜为什么比较快,而且什么时候用合适?下面是自己对迭代加深搜的一些浅薄的了解:

    1.首先迭代加深搜适合用在:求最少步数(带有BFS的特点)并且不太容易估计搜索深度的问题上,同时兼有了BFS求最少步数和DFS易写、无需多开数组的特点。

    2.相对于赤裸裸的回溯,迭代加深搜由于限制了搜索深度,所以也能适当地剪枝。

    3.我编不下去了……


    代码一:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <vector>
     7 #include <queue>
     8 #include <stack>
     9 #include <map>
    10 #include <string>
    11 #include <set>
    12 #define ms(a,b) memset((a),(b),sizeof((a)))
    13 using namespace std;
    14 typedef long long LL;
    15 const int INF = 2e9;
    16 const LL LNF = 9e18;
    17 const int MOD = 1e9+7;
    18 const int MAXN = 10+10;
    19 
    20 int n;
    21 char dna[MAXN][MAXN];
    22 int len[MAXN], pos[MAXN];
    23 char s[4] = {'A', 'G', 'C', 'T'};
    24 
    25 bool dfs(int k, int limit)  //k为放了几个, k+1才为当前要放的
    26 {
    27     int maxx = 0, cnt = 0;  //maxx为最长剩余的dna片段, cnt为剩余的片段之和(核苷酸链?好怀念啊)
    28     for(int i = 0; i<n; i++)
    29     {
    30         cnt += len[i]-pos[i];
    31         maxx = max(maxx, len[i]-pos[i]);
    32     }
    33     if(cnt==0) return true;    //如果片段都放完,则已得到答案
    34     if(cnt<=limit-k) return true;   //剪枝:片段之和小于等于剩余能放数量,肯定能够得到答案
    35     if(maxx>limit-k) return false;  //剪枝:最小的估计值都大于剩余能放数量,肯定不能得到答案
    36 
    37     int tmp[MAXN];
    38     for(int i = 0; i<4; i++)
    39     {
    40         memcpy(tmp, pos, sizeof(tmp));
    41         bool flag = false;
    42         for(int j = 0; j<n; j++)
    43             if(dna[j][pos[j]]==s[i])
    44                 pos[j]++, flag = true;
    45 
    46         //k+1<=limit:在限制范围内
    47         if(k+1<=limit && flag && dfs(k+1, limit) )
    48             return true;
    49         memcpy(pos, tmp, sizeof(pos));
    50     }
    51     return false;
    52 }
    53 
    54 int main()
    55 {
    56     int T;
    57     scanf("%d",&T);
    58     while(T--)
    59     {
    60         scanf("%d",&n);
    61         int limit = 0;
    62         for(int i = 0; i<n; i++)
    63         {
    64             scanf("%s",dna[i]);
    65             len[i] = strlen(dna[i]);
    66             limit = max(limit, len[i]);
    67         }
    68 
    69         ms(pos, 0);
    70         while(!dfs(0, limit))
    71             limit++;
    72         printf("%d
    ", limit);
    73     }
    74 }
    View Code


    代码二:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <vector>
     7 #include <queue>
     8 #include <stack>
     9 #include <map>
    10 #include <string>
    11 #include <set>
    12 #define ms(a,b) memset((a),(b),sizeof((a)))
    13 using namespace std;
    14 typedef long long LL;
    15 const int INF = 2e9;
    16 const LL LNF = 9e18;
    17 const int MOD = 1e9+7;
    18 const int MAXN = 10+10;
    19 
    20 int n;
    21 char dna[MAXN][MAXN];
    22 int len[MAXN], pos[MAXN];
    23 char s[4] = {'A', 'G', 'C', 'T'};
    24 
    25 bool dfs(int k, int limit)  //k为放了几个, k+1才为当前要放的
    26 {
    27     if(k>limit) return false;
    28 
    29     int maxx = 0, cnt = 0;  //maxx为最长剩余的dna片段, cnt为剩余的片段之和(核苷酸链?好怀念啊)
    30     for(int i = 0; i<n; i++)
    31     {
    32         cnt += len[i]-pos[i];
    33         maxx = max(maxx, len[i]-pos[i]);
    34     }
    35     if(cnt==0) return true;    //如果片段都放完,则已得到答案
    36     if(cnt<=limit-k) return true;   //剪枝:片段之和小于等于剩余能放数量,肯定能够得到答案
    37     if(maxx>limit-k) return false;  //剪枝:最小的估计值都大于剩余能放数量,肯定不能得到答案
    38 
    39     int tmp[MAXN];
    40     for(int i = 0; i<4; i++)
    41     {
    42         memcpy(tmp, pos, sizeof(tmp));
    43         bool flag = false;
    44         for(int j = 0; j<n; j++)
    45             if(dna[j][pos[j]]==s[i])
    46                 pos[j]++, flag = true;
    47 
    48         if(flag && dfs(k+1, limit) )
    49             return true;
    50         memcpy(pos, tmp, sizeof(pos));
    51     }
    52     return false;
    53 }
    54 
    55 int main()
    56 {
    57     int T;
    58     scanf("%d",&T);
    59     while(T--)
    60     {
    61         scanf("%d",&n);
    62         int limit = 0;
    63         for(int i = 0; i<n; i++)
    64         {
    65             scanf("%s",dna[i]);
    66             len[i] = strlen(dna[i]);
    67             limit = max(limit, len[i]);
    68         }
    69 
    70         ms(pos, 0);
    71         while(!dfs(0, limit))
    72             limit++;
    73         printf("%d
    ", limit);
    74     }
    75 }
    View Code




  • 相关阅读:
    脚本 页面截取
    net Email 发送(借助第三方)
    查询表、存储过程、触发器的创建时间和最后修改时间(转)
    ActionScript简介
    mysql 1064 USING BTREE问题
    浅谈SQL SERVER函数count()
    程序员学习能力提升三要素
    构建杀手级应用的 JavaScript 框架、工具和技术
    javascript刷新页面方法大全
    html页<![if IE]>...<![endif]>使用解说
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/7538578.html
Copyright © 2011-2022 走看看