zoukankan      html  css  js  c++  java
  • POJ1077 Eight —— 经典的搜索问题

    题目链接:http://poj.org/problem?id=1077



    Eight
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 33267   Accepted: 14404   Special Judge

    Description

    The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as: 
     1  2  3  4 
    
     5  6  7  8 
    
     9 10 11 12 
    
    13 14 15  x 

    where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle: 
     1  2  3  4    1  2  3  4    1  2  3  4    1  2  3  4 
    
     5  6  7  8    5  6  7  8    5  6  7  8    5  6  7  8 
    
     9  x 10 12    9 10  x 12    9 10 11 12    9 10 11 12 
    
    13 14 11 15   13 14 11 15   13 14  x 15   13 14 15  x 
    
               r->           d->           r-> 

    The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively. 

    Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and 
    frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course). 

    In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three 
    arrangement. 

    Input

    You will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle 
     1  2  3 
    
     x  4  6 
    
     7  5  8 

    is described by this list: 
     1 2 3 x 4 6 7 5 8 

    Output

    You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line.

    Sample Input

     2  3  4  1  5  x  7  6  8 

    Sample Output

    ullddrurdllurdruldr

    Source



    题解:

    1.对于棋盘,所有的情况为:9! <4e5<1e6,所以使用枚举的方法是不会超时的,前提是数据较弱(如POJ1077),或者一次性枚举预处理掉所有情况(HDU1043)。

    2.对于判重:使用STL的set肯定会超时的。一开始想利用十进制数,每一位保存一个格子,结果9个格子就是9位数,数组根本开不了那么大,所以此种尝试失败。后来看到康拓,不太理解为什么能用(不会有冲突吗?),但还是先用着,有时间再研究一下。如果下次遇到类似123456789这九个数需要进行哈希的,就使用康拓试试。

    3.推荐阅读:八数码的八境界   ——  来自liugoodness,特此鸣谢。



    写法:

    1.正向BFS:http://www.cnblogs.com/DOLFAMINGO/p/7538587.html

    2.反向BFS:http://www.cnblogs.com/DOLFAMINGO/p/7538586.html

    3.双向BFS:http://www.cnblogs.com/DOLFAMINGO/p/7538585.html

    4.  A*算法  :http://www.cnblogs.com/DOLFAMINGO/p/7538584.html

    5.IDA*算法:http://www.cnblogs.com/DOLFAMINGO/p/7538583.html

  • 相关阅读:
    07-0.部署 worker 节点
    06-4.部署高可用 kube-scheduler 集群
    06-3.部署高可用 kube-controller-manager 集群
    vim 查找并替换多个匹配字符
    vim 行号的显示与隐藏
    Python学习【第4篇】:元组魔法
    Python学习【第3篇】:列表魔法
    Python学习【第2篇】:基本数据类型(详解)
    pycharm设置头文件模板(for mac)
    pycharm创建文件夹以及查看源文件存放位置(FOR MAC)
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/7538588.html
Copyright © 2011-2022 走看看