zoukankan      html  css  js  c++  java
  • HDU5171 GTY's birthday gift —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5171

    GTY's birthday gift

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 1760    Accepted Submission(s): 685


    Problem Description
    FFZ's birthday is coming. GTY wants to give a gift to ZZF. He asked his gay friends what he should give to ZZF. One of them said, 'Nothing is more interesting than a number multiset.' So GTY decided to make a multiset for ZZF. Multiset can contain elements with same values. Because GTY wants to finish the gift as soon as possible, he will use JURUO magic. It allows him to choose two numbers a and b(a,bS), and add a+b to the multiset. GTY can use the magic for k times, and he wants the sum of the multiset is maximum, because the larger the sum is, the happier FFZ will be. You need to help him calculate the maximum sum of the multiset.
     
    Input
    Multi test cases (about 3) . The first line contains two integers n and k (2n100000,1k1000000000). The second line contains n elements ai (1ai100000)separated by spaces , indicating the multiset S .
     
    Output
    For each case , print the maximum sum of the multiset (mod 10000007).
     
    Sample Input
    3 2 3 6 2
     
    Sample Output
    35
     
    Source
     
    Recommend
    hujie


    题意:

    已经存在一个大小为n的集合,现在可以任意从中找到两个数,把它们的和加入集合中,这样的操作执行k次,那么这个集合的总和最大可以是多少?


    题解:

    可以推出斐波那契数列,那么就用矩阵快速幂求前n项,以及前n项和。





    代码如下:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <vector>
     6 #include <cmath>
     7 #include <queue>
     8 #include <stack>
     9 #include <map>
    10 #include <string>
    11 #include <set>
    12 #define rep(i,s,t) for(int (i)=(s); (i)<=(t); (i)++)
    13 #define ms(a,b) memset((a),(b),sizeof((a)))
    14 using namespace std;
    15 typedef long long LL;
    16 const int INF = 2e9;
    17 const LL LNF = 9e18;
    18 const double eps = 1e-6;
    19 const int mod = 10000007;
    20 const int maxn = 100000+10;
    21 
    22 int n,k;
    23 int a[maxn];
    24 
    25 struct MAT
    26 {
    27     LL mat[5][5];
    28     void init() {
    29         rep(i,1,3) rep(j,1,3)
    30             mat[i][j] = (i==j);
    31     }
    32 };
    33 
    34 MAT mul(MAT x, MAT y)
    35 {
    36     MAT s;
    37     ms(s.mat,0);
    38     rep(i,1,3)  rep(j,1,3) rep(k,1,3)
    39         s.mat[i][j] += (1LL*x.mat[i][k]*y.mat[k][j])%mod, s.mat[i][j] %= mod;
    40     return s;
    41 }
    42 
    43 MAT qpow(MAT x, int y)
    44 {
    45     MAT s;
    46     s.init();
    47     while(y)
    48     {
    49         if(y&1)  s = mul(s,x);
    50         x = mul(x,x);
    51         y >>= 1;
    52     }
    53     return s;
    54 }
    55 
    56 int main()
    57 {
    58     while(scanf("%d%d",&n,&k)!=EOF)
    59     {
    60         rep(i,1,n)
    61             scanf("%lld",&a[i]);
    62 
    63         sort(a+1,a+1+n);
    64         LL ans = 0;
    65         rep(i,1,n)
    66             ans += a[i], ans %= mod;
    67 
    68         if(k==1)
    69         {
    70             ans += (a[n-1]+a[n])%mod, ans %= mod;
    71             cout<<ans<<endl;
    72             continue;
    73         }
    74 
    75         MAT s;
    76         ms(s.mat,0);
    77         s.mat[1][1] = s.mat[1][2] = s.mat[1][3] = 1;
    78         s.mat[2][2] = s.mat[2][3] = s.mat[3][2] = 1;
    79         s = qpow(s,k-2);
    80 
    81         ans += (1LL*(2*a[n-1]+3*a[n])*s.mat[1][1])%mod, ans %= mod;
    82         ans += (1LL*(1*a[n-1]+2*a[n])*s.mat[1][2])%mod, ans %= mod;
    83         ans += (1LL*(1*a[n-1]+1*a[n])*s.mat[1][3])%mod, ans %= mod;
    84         cout<<ans<<endl;
    85     }
    86 }
    View Code


  • 相关阅读:
    mysql通过data目录恢复数据库
    CentOS安装TortoiseSVN svn 客户端
    CentOS上安装Node.js
    PHP--进行模块化设计
    PHP开发绝对不能违背的安全铁则
    达内培训:php在线端口扫描器
    使用 PHP 限制下载速度
    使用无限生命期Session的方法
    使用php作linux自动执行脚本
    腾讯星座运势api
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/7538625.html
Copyright © 2011-2022 走看看