题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5178
pairs
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3090 Accepted Submission(s): 1085
Problem Description
John has n points
on the X axis, and their coordinates are (x[i],0),(i=0,1,2,…,n−1).
He wants to know how many pairs<a,b> that |x[b]−x[a]|≤k.(a<b)
Input
The first line contains a single integer T (about
5), indicating the number of cases.
Each test case begins with two integers n,k(1≤n≤100000,1≤k≤109).
Next n lines contain an integer x[i](−109≤x[i]≤109), means the X coordinates.
Each test case begins with two integers n,k(1≤n≤100000,1≤k≤109).
Next n lines contain an integer x[i](−109≤x[i]≤109), means the X coordinates.
Output
For each case, output an integer means how many pairs<a,b> that |x[b]−x[a]|≤k.
Sample Input
2
5 5
-100
0
100
101
102
5 300
-100
0
100
101
102
Sample Output
3
10
题解:
两个要求:1:b>a 2.abs(x[b]-x[a])<=k。
先对数组进行排序。对于满足上述条件的a、b(ab为排序前的序号)来说。a、b的关系是可以互相转化的:
当abs(x[b]-x[a])<=k 且 b>a时,那这一对a、b固然满足条件。
当abs(x[b]-x[a])<=k 且 a>b时,那a就变成b,b就变成a,所以也满足条件。
综上,只需要找到abs(x[b]-x[a])<=k 的a、b对即可,无所谓ab的大小关系。但是直接这样计算会出现重复,正确的做法是,只取一边,即:x[a]+k或者是 x[a]-k,这样就能避免重复。
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 #include <vector> 6 #include <cmath> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 #define rep(i,s,t) for(int (i)=(s); (i)<=(t); (i)++) 13 #define ms(a,b) memset((a),(b),sizeof((a))) 14 using namespace std; 15 typedef long long LL; 16 const int INF = 2e9; 17 const LL LNF = 9e18; 18 const double eps = 1e-6; 19 const int mod = 1e9+7; 20 const int maxn = 1e5+10; 21 22 int n, k; 23 int a[maxn]; 24 25 int sch(int x) 26 { 27 int l = 1, r = n; 28 while(l<=r) 29 { 30 int mid = (l+r)>>1; 31 if(a[mid]<=x) 32 l = mid + 1; 33 else 34 r = mid - 1; 35 } 36 return r; 37 } 38 39 int main() 40 { 41 int T; 42 scanf("%d",&T); 43 while(T--) 44 { 45 scanf("%d%d",&n,&k); 46 rep(i,1,n) 47 scanf("%d",&a[i]); 48 49 sort(a+1,a+1+n); 50 LL ans = 0; 51 rep(i,1,n-1) 52 { 53 int p = sch(a[i]+k); 54 // int p = upper_bound(a+1,a+1+n,a[i]+k) - (a+1); 55 ans += p-i; 56 } 57 printf("%I64d ",ans); 58 } 59 }