题目链接:http://codeforces.com/problemset/problem/117/C
A tournament is a directed graph without self-loops in which every pair of vertexes is connected by exactly one directed edge. That is, for any two vertexes u and v (u ≠ v) exists either an edge going from u to v, or an edge from v to u.
You are given a tournament consisting of n vertexes. Your task is to find there a cycle of length three.
The first line contains an integer n (1 ≤ n ≤ 5000). Next n lines contain the adjacency matrix A of the graph (without spaces). Ai, j = 1 if the graph has an edge going from vertex i to vertex j, otherwise Ai, j = 0. Ai, j stands for the j-th character in the i-th line.
It is guaranteed that the given graph is a tournament, that is, Ai, i = 0, Ai, j ≠ Aj, i (1 ≤ i, j ≤ n, i ≠ j).
Print three distinct vertexes of the graph a1, a2, a3 (1 ≤ ai ≤ n), such that Aa1, a2 = Aa2, a3 = Aa3, a1 = 1, or "-1", if a cycle whose length equals three does not exist.
If there are several solutions, print any of them.
5 00100 10000 01001 11101 11000
1 3 2
5 01111 00000 01000 01100 01110
-1
题解:
由于只有三个点,所以在dfs时:对于当前点,判断下一个点是否能到达上一个点。(相当于枚举当前点)。
学习之处:
1.做题技巧:如果题目的限定很小,那么就可以直接枚举,不必要找到通用的方法,找到解决此题的方法即可。
例如:http://blog.csdn.net/dolfamingo/article/details/62887883
此题的限定条件是3条边,那么可以直接枚举第二条边。找到能解决三条边的方法即可,不必寻找能解决n条边的方法。但是题后要思考,寻找通用的方法。
2.有关找环的另一道题:http://blog.csdn.net/dolfamingo/article/details/72566330
3.思考题:找大小为m的环又该怎么办呢?
此题环的大小为3,所以刚好可以用vis[]来防止重复访问,但是当环为m时,就不能这样了(因为即便某些点被访问过,但是仍能与当前的路径构成m环),这个问题值得思考。
代码如下:
#include<bits/stdc++.h> using namespace std; typedef long long LL; const double eps = 1e-6; const int INF = 2e9; const LL LNF = 9e18; const int mod = 1e9+7; const int maxn = 5e3+10; int n; int g[maxn][maxn], vis[maxn]; int dfs(int u, int pre) { vis[u] = 1; for(int i = 1; i<=n; i++) { if(g[u][i]) //u能到v { if(pre!=-1 && g[i][pre]) //不管i有没被访问,只要能构成3环就可以了。 { printf("%d %d %d", pre, u, i); return 1; } if(!vis[i] && dfs(i,u)) //如果i没有被访问,则访问。 return 1; } } return 0; } int main() { scanf("%d",&n); char s[maxn]; for(int i = 1; i<=n; i++) { scanf("%s",s+1); for(int j = 1; j<=n; j++) g[i][j] = s[j] - '0'; } for(int i = 1; i<=n; i++) if(!vis[i] && dfs(i,-1)) return 0; puts("-1"); return 0; }