zoukankan      html  css  js  c++  java
  • POJ3579 Median —— 二分

    题目链接:http://poj.org/problem?id=3579

    Median
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 8286   Accepted: 2892

    Description

    Given N numbers, X1X2, ... , XN, let us calculate the difference of every pair of numbers: ∣Xi - Xj∣ (1 ≤ i  j  N). We can get C(N,2) differences through this work, and now your task is to find the median of the differences as quickly as you can!

    Note in this problem, the median is defined as the (m/2)-th  smallest number if m,the amount of the differences, is even. For example, you have to find the third smallest one in the case of = 6.

    Input

    The input consists of several test cases.
    In each test case, N will be given in the first line. Then N numbers are given, representing X1X2, ... , XN, ( X≤ 1,000,000,000  3 ≤ N ≤ 1,00,000 )

    Output

    For each test case, output the median in a separate line.

    Sample Input

    4
    1 3 2 4
    3
    1 10 2
    

    Sample Output

    1
    8

    Source

     
     
     
     
    题解:
    1.对数组进行排序。计算出有多少对数,并计算出中位数所在的位置m。
    2.二分中位数mid,然后检测有多少对数的差小于等于mid。假设有cnt对,如果cnt>=m,那么缩小中位数;否则扩大中位数。
    3.注意:upper_bound()、lower_bound()的区间是前闭后开
     
     
    代码如下:
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <vector>
     7 #include <queue>
     8 #include <stack>
     9 #include <map>
    10 #include <string>
    11 #include <set>
    12 #define ms(a,b) memset((a),(b),sizeof((a)))
    13 using namespace std;
    14 typedef long long LL;
    15 const double EPS = 1e-8;
    16 const int INF = 2e9;
    17 const LL LNF = 2e18;
    18 const int MAXN = 1e5+10;
    19 
    20 int n, a[MAXN];
    21 int m;
    22 
    23 bool test(int mid)
    24 {
    25     int cnt = 0;
    26     for(int i = 1; i<=n; i++)   //注意,对于每个数,只需往一边找,否则会出现重复计算。
    27         cnt += upper_bound(a+i+1, a+1+n, a[i]+mid)-(a+i+1); //在[i+1, n+1)的范围,即[i+1,n]
    28     return cnt>=m;
    29 }
    30 
    31 int main()
    32 {
    33     while(scanf("%d", &n)!=EOF)
    34     {
    35         for(int i = 1; i<=n; i++)
    36             scanf("%d", &a[i]);
    37 
    38         sort(a+1, a+1+n);
    39         m = n*(n-1)/2;  //有多少个数
    40         m = (m+1)/2;    //中位数所在的位置
    41         int l = 0, r = a[n]-a[1];
    42         while(l<=r)
    43         {
    44             int mid = (l+r)>>1;
    45             if(test(mid))
    46                 r = mid - 1;
    47             else
    48                 l = mid + 1;
    49         }
    50         printf("%d
    ", l);
    51     }
    52 }
    View Code
  • 相关阅读:
    数据仓库中的几种数据模型
    数据仓库为什么要分层
    数据仓库的两种建模方法
    数据仓库之架构发展
    数据仓库是什么
    ETL 自动化测试框架
    大数据测试之ETL测试工具和面试常见的问题及答案
    Hadoop面试链接
    Hadoop 面试总结
    Spark 基本架构及原理
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/7571445.html
Copyright © 2011-2022 走看看