zoukankan      html  css  js  c++  java
  • POJ2533 Longest Ordered Subsequence —— DP 最长上升子序列(LIS)

    题目链接:http://poj.org/problem?id=2533

    Longest Ordered Subsequence
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 55459   Accepted: 24864

    Description

    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

    Input

    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

    Output

    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

    Sample Input

    7
    1 7 3 5 9 4 8

    Sample Output

    4
    

    Source

    Northeastern Europe 2002, Far-Eastern Subregion
     
     
    O(n^2):
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <vector>
     7 #include <queue>
     8 #include <stack>
     9 #include <map>
    10 #include <string>
    11 #include <set>
    12 #define ms(a,b) memset((a),(b),sizeof((a)))
    13 using namespace std;
    14 typedef long long LL;
    15 const double EPS = 1e-8;
    16 const int INF = 2e9;
    17 const LL LNF = 2e18;
    18 const int MAXN = 1e6+10;
    19 
    20 int dp[MAXN], a[MAXN];
    21 
    22 int main()
    23 {
    24     int n;
    25     while(scanf("%d",&n)!=EOF)
    26     {
    27         for(int i = 1; i<=n; i++)
    28             scanf("%d",&a[i]);
    29 
    30         ms(dp, 0);
    31         for(int i = 1; i<=n; i++)
    32         for(int j = 0; j<i; j++)
    33             if(j==0 || a[i]>a[j])
    34                 dp[i] = max(dp[i], dp[j]+1);
    35 
    36         int ans = -INF;
    37         for(int i = 1; i<=n; i++)
    38             ans = max(ans, dp[i]);
    39         printf("%d
    ",ans);
    40     }
    41  }
    View Code
     
    O(nlogn):
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <vector>
     7 #include <queue>
     8 #include <stack>
     9 #include <map>
    10 #include <string>
    11 #include <set>
    12 #define ms(a,b) memset((a),(b),sizeof((a)))
    13 using namespace std;
    14 typedef long long LL;
    15 const double EPS = 1e-8;
    16 const int INF = 2e9;
    17 const LL LNF = 2e18;
    18 const int MAXN = 1e6+10;
    19 
    20 int dp[MAXN], a[MAXN];
    21 
    22 int main()
    23 {
    24     int n;
    25     while(scanf("%d",&n)!=EOF)
    26     {
    27         for(int i = 1; i<=n; i++)
    28             scanf("%d",&a[i]);
    29 
    30         int len = 0;
    31         for(int i = 1; i<=n; i++)
    32         {
    33             if(i==1 || a[i]>dp[len])
    34                 dp[++len] = a[i];
    35 
    36             else
    37             {
    38                 int pos = lower_bound(dp+1,dp+1+len,a[i]) - (dp+1);
    39                 dp[pos+1] = a[i];
    40             }
    41         }
    42         printf("%d
    ",len);
    43     }
    44  }
    View Code
  • 相关阅读:
    Codeforce-Power Tower(欧拉降幂)
    Caesar Cipher
    BZOJ-1143-祭祀river(二分图-偏序集最大反链)
    商务英语中级第三版 MODULE2 Task 3: Listen to the presentation and write what each refers to.
    计算机网络第一章学习笔记
    第一篇博客随笔
    子页面传递数组给父页面
    第6课第4节_Binder系统_驱动情景分析_服务注册过程_分析
    opencv Mat 与MFC中的CImage相互转换
    多文档中建立一个对话框类,通过这个方法来在其他类中得到对话框对象指针,访问对话框成员
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/7624514.html
Copyright © 2011-2022 走看看