zoukankan      html  css  js  c++  java
  • POJ2533 Longest Ordered Subsequence —— DP 最长上升子序列(LIS)

    题目链接:http://poj.org/problem?id=2533

    Longest Ordered Subsequence
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 55459   Accepted: 24864

    Description

    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

    Input

    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

    Output

    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

    Sample Input

    7
    1 7 3 5 9 4 8

    Sample Output

    4
    

    Source

    Northeastern Europe 2002, Far-Eastern Subregion
     
     
    O(n^2):
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <vector>
     7 #include <queue>
     8 #include <stack>
     9 #include <map>
    10 #include <string>
    11 #include <set>
    12 #define ms(a,b) memset((a),(b),sizeof((a)))
    13 using namespace std;
    14 typedef long long LL;
    15 const double EPS = 1e-8;
    16 const int INF = 2e9;
    17 const LL LNF = 2e18;
    18 const int MAXN = 1e6+10;
    19 
    20 int dp[MAXN], a[MAXN];
    21 
    22 int main()
    23 {
    24     int n;
    25     while(scanf("%d",&n)!=EOF)
    26     {
    27         for(int i = 1; i<=n; i++)
    28             scanf("%d",&a[i]);
    29 
    30         ms(dp, 0);
    31         for(int i = 1; i<=n; i++)
    32         for(int j = 0; j<i; j++)
    33             if(j==0 || a[i]>a[j])
    34                 dp[i] = max(dp[i], dp[j]+1);
    35 
    36         int ans = -INF;
    37         for(int i = 1; i<=n; i++)
    38             ans = max(ans, dp[i]);
    39         printf("%d
    ",ans);
    40     }
    41  }
    View Code
     
    O(nlogn):
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <vector>
     7 #include <queue>
     8 #include <stack>
     9 #include <map>
    10 #include <string>
    11 #include <set>
    12 #define ms(a,b) memset((a),(b),sizeof((a)))
    13 using namespace std;
    14 typedef long long LL;
    15 const double EPS = 1e-8;
    16 const int INF = 2e9;
    17 const LL LNF = 2e18;
    18 const int MAXN = 1e6+10;
    19 
    20 int dp[MAXN], a[MAXN];
    21 
    22 int main()
    23 {
    24     int n;
    25     while(scanf("%d",&n)!=EOF)
    26     {
    27         for(int i = 1; i<=n; i++)
    28             scanf("%d",&a[i]);
    29 
    30         int len = 0;
    31         for(int i = 1; i<=n; i++)
    32         {
    33             if(i==1 || a[i]>dp[len])
    34                 dp[++len] = a[i];
    35 
    36             else
    37             {
    38                 int pos = lower_bound(dp+1,dp+1+len,a[i]) - (dp+1);
    39                 dp[pos+1] = a[i];
    40             }
    41         }
    42         printf("%d
    ",len);
    43     }
    44  }
    View Code
  • 相关阅读:
    [bzoj5483][Usaco2018 Dec]Balance Beam_凸包_概率期望
    [bzoj3829][Poi2014]FarmCraft_树形dp
    [bzoj3420]Poi2013 Triumphal arch_树形dp_二分
    [bzoj4240]有趣的家庭菜园_树状数组
    [CF9D]How Many Trees?_动态规划_树形dp_ntt
    拖拽排序
    windows-build-tools
    阿里云七牛云oss获取视频内的帧图片
    转义符输入的转换
    node脚本下载geo数据
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/7624514.html
Copyright © 2011-2022 走看看