zoukankan      html  css  js  c++  java
  • POJ1458 Common Subsequence —— DP 最长公共子序列(LCS)

    题目链接:http://poj.org/problem?id=1458

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 55099   Accepted: 22973

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    Source

     
     
    代码如下:
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <vector>
     7 #include <queue>
     8 #include <stack>
     9 #include <map>
    10 #include <string>
    11 #include <set>
    12 #define ms(a,b) memset((a),(b),sizeof((a)))
    13 using namespace std;
    14 typedef long long LL;
    15 const double EPS = 1e-8;
    16 const int INF = 2e9;
    17 const LL LNF = 2e18;
    18 const int MAXN = 1e3+10;
    19 
    20 char a[MAXN], b[MAXN];
    21 int dp[MAXN][MAXN];
    22 
    23 int main()
    24 {
    25     while(scanf("%s%s", a+1, b+1)!=EOF)
    26     {
    27         int n = strlen(a+1);
    28         int m = strlen(b+1);
    29 
    30         ms(dp, 0);
    31         for(int i = 1; i<=n; i++)
    32         for(int j = 1; j<=m; j++)
    33         {
    34             if(a[i]==b[j])
    35                 dp[i][j] = dp[i-1][j-1]+1;
    36             else
    37                 dp[i][j] = max(dp[i][j-1], dp[i-1][j]);
    38         }
    39         printf("%d
    ", dp[n][m]);
    40     }
    41 }
    View Code
  • 相关阅读:
    AJPFX:如何保证对象唯一性呢?
    AJPFX关于this用法和注意事项
    AJPFX关于abstract的总结
    AJPFX区分this和super
    AJPFX关于java数组排序
    AJPFX关于异常和file类的总结
    AJPFX总结Java 类加载器
    优先级队列用法详解(priority_queue)
    子类中调用构造函数和析构函数的顺序
    strcpy,memcpy,memset函数实现
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/7624521.html
Copyright © 2011-2022 走看看