zoukankan      html  css  js  c++  java
  • POJ3692 Kindergarten —— 二分图最大团

    题目链接:http://poj.org/problem?id=3692

    Kindergarten
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 7371   Accepted: 3636

    Description

    In a kindergarten, there are a lot of kids. All girls of the kids know each other and all boys also know each other. In addition to that, some girls and boys know each other. Now the teachers want to pick some kids to play a game, which need that all players know each other. You are to help to find maximum number of kids the teacher can pick.

    Input

    The input consists of multiple test cases. Each test case starts with a line containing three integers
    GB (1 ≤ GB ≤ 200) and M (0 ≤ M ≤ G × B), which is the number of girls, the number of boys and
    the number of pairs of girl and boy who know each other, respectively.
    Each of the following M lines contains two integers X and Y (1 ≤ X≤ G,1 ≤ Y ≤ B), which indicates that girl X and boy Y know each other.
    The girls are numbered from 1 to G and the boys are numbered from 1 to B.

    The last test case is followed by a line containing three zeros.

    Output

    For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the maximum number of kids the teacher can pick.

    Sample Input

    2 3 3
    1 1
    1 2
    2 3
    2 3 5
    1 1
    1 2
    2 1
    2 2
    2 3
    0 0 0

    Sample Output

    Case 1: 3
    Case 2: 4

    Source

    题解:

    最大团 = 总体 - 补图的最大独立集。

    证明:最大独立集,即两两没有联系。那么它的补图,就是两两都有联系。

    代码如下:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cstdlib>
     5 #include <string>
     6 #include <vector>
     7 #include <map>
     8 #include <set>
     9 #include <queue>
    10 #include <sstream>
    11 #include <algorithm>
    12 using namespace std;
    13 const int INF = 2e9;
    14 const int MOD = 1e9+7;
    15 const int MAXN = 200+10;
    16 
    17 int uN, vN;
    18 int M[MAXN][MAXN], link[MAXN];
    19 bool vis[MAXN];
    20 
    21 bool dfs(int u)
    22 {
    23     for(int i = 1; i<=vN; i++)
    24     if(M[u][i] && !vis[i])
    25     {
    26         vis[i] = true;
    27         if(link[i]==-1 || dfs(link[i]))
    28         {
    29             link[i] = u;
    30             return true;
    31         }
    32     }
    33     return false;
    34 }
    35 
    36 int hungary()
    37 {
    38     int ret = 0;
    39     memset(link, -1, sizeof(link));
    40     for(int i = 1; i<=uN; i++)
    41     {
    42         memset(vis, 0, sizeof(vis));
    43         if(dfs(i)) ret++;
    44     }
    45     return ret;
    46 }
    47 
    48 int main()
    49 {
    50     int T, m, kase = 0;
    51     while(scanf("%d%d%d", &uN, &vN, &m)&& (uN||vN||m))
    52     {
    53         memset(M, true, sizeof(M));
    54         for(int i = 1; i<=m; i++)
    55         {
    56             int u, v;
    57             scanf("%d%d", &u, &v);
    58             M[u][v] = false;
    59         }
    60 
    61         int cnt = hungary();
    62         printf("Case %d: %d
    ", ++kase, uN+vN-cnt);
    63     }
    64 }
    View Code
  • 相关阅读:
    关于汉密尔顿回路
    hdu 3018 Ant Trip
    hdu 1116 Play on Words
    关于欧拉回路、欧拉通路的一些定理及推论
    hdu 1531 King
    hdu 3440 House Man
    hdu 3666 THE MATRIX PROBLEM
    hdu 1384 Intervals
    关于差分约束系统
    hdu 1878 欧拉回路
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/7811313.html
Copyright © 2011-2022 走看看