题目链接:https://vjudge.net/problem/LightOJ-1245
Time Limit: 3 second(s) | Memory Limit: 32 MB |
I was trying to solve problem '1234 - Harmonic Number', I wrote the following code
long long H( int n ) {
long long res = 0;
for( int i = 1; i <= n; i++ )
res = res + n / i;
return res;
}
Yes, my error was that I was using the integer divisions only. However, you are given n, you have to find H(n) as in my code.
Input
Input starts with an integer T (≤ 1000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n < 231).
Output
For each case, print the case number and H(n) calculated by the code.
Sample Input |
Output for Sample Input |
11 1 2 3 4 5 6 7 8 9 10 2147483647 |
Case 1: 1 Case 2: 3 Case 3: 5 Case 4: 8 Case 5: 10 Case 6: 14 Case 7: 16 Case 8: 20 Case 9: 23 Case 10: 27 Case 11: 46475828386 |
题意:
对于一个数n,求出 sigma(n/k), 1<=k<=n。
题解:
1.由于n<=2^31,直接暴力不不可能的。
2.手写一下可发现一个规律, 当 n/i = k时, i的范围为 (n/(k+1), n/k],即有n/k- n/(k+1) 个 i 使得n/i = k。
3.有了上述结论之后,就可以降低暴力程度了,设 m = sqrt(n)。先从1枚举到m,求出n/i的和,这样 [1,m] 这个区间的求值就解决了,还剩 [m+1, n] 这个区间:从m递减枚举到1,求出k*(n/k - n/(k+1))的和,这样就求出了[ n/m, n]的值,当 n/m==m时,即开始下标为m,则区间为[m,n],所以在m的位置重复计算了,需要减去m;当n/m!=m,即n/m>m时,其实下标为m+1,所以区间为 [m+1,n]。
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 #include <vector> 6 #include <cmath> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 using namespace std; 13 typedef long long LL; 14 const int INF = 2e9; 15 const LL LNF = 9e18; 16 const int mod = 1e9+7; 17 const int MAXM = 1e5+10; 18 const int MAXN = 1e6+10; 19 20 int main() 21 { 22 int T, n, kase = 0; 23 scanf("%d", &T); 24 while(T--) 25 { 26 scanf("%d", &n); 27 int m = sqrt(n); 28 29 LL ans = 0; 30 for(int i = 1; i<=m; i++) ans += n/i; 31 for(int i = 1; i<=m; i++) ans += 1LL*i*(n/i - n/(i+1)); 32 if(n/m==m) ans -= m; 33 printf("Case %d: %lld ", ++kase, ans); 34 } 35 }