题目链接:https://vjudge.net/problem/HDU-4990
Reading comprehension
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2329 Accepted Submission(s): 954
Problem Description
Read the program below carefully then answer the question.
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include<iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include<vector>
const int MAX=100000*2;
const int INF=1e9;
int main()
{
int n,m,ans,i;
while(scanf("%d%d",&n,&m)!=EOF)
{
ans=0;
for(i=1;i<=n;i++)
{
if(i&1)ans=(ans*2+1)%m;
else ans=ans*2%m;
}
printf("%d ",ans);
}
return 0;
}
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include<iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include<vector>
const int MAX=100000*2;
const int INF=1e9;
int main()
{
int n,m,ans,i;
while(scanf("%d%d",&n,&m)!=EOF)
{
ans=0;
for(i=1;i<=n;i++)
{
if(i&1)ans=(ans*2+1)%m;
else ans=ans*2%m;
}
printf("%d ",ans);
}
return 0;
}
Input
Multi test cases,each line will contain two integers n and m. Process to end of file.
[Technical Specification]
1<=n, m <= 1000000000
[Technical Specification]
1<=n, m <= 1000000000
Output
For each case,output an integer,represents the output of above program.
Sample Input
1 10
3 100
Sample Output
1
5
Source
Recommend
heyang
题解:
当n为奇数时,f[n] = 2*f[n-1]+1,f[n-1] = 2*f[n-2],所以:f[n] = f[n-1] + 2*f[n-2] + 1;
当n为偶数时,f[n] = 2*f[n-1],f[n-1] = 2*f[n-2] + 1,所以:f[n] = f[n-1] + 2*f[n-2] + 1;
综上:f[n] = f[n-1] + 2*f[n-2] + 1,构造矩阵:
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 #include <vector> 6 #include <cmath> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 using namespace std; 13 typedef long long LL; 14 const int INF = 2e9; 15 const LL LNF = 9e18; 16 //const int MOD = 10000007; 17 const int MAXN = 1e6+100; 18 19 LL MOD; 20 const int Size = 3; 21 struct MA 22 { 23 LL mat[Size][Size]; 24 void init() 25 { 26 for(int i = 0; i<Size; i++) 27 for(int j = 0; j<Size; j++) 28 mat[i][j] = (i==j); 29 } 30 }; 31 32 MA mul(MA x, MA y) 33 { 34 MA ret; 35 memset(ret.mat, 0, sizeof(ret.mat)); 36 for(int i = 0; i<Size; i++) 37 for(int j = 0; j<Size; j++) 38 for(int k = 0; k<Size; k++) 39 ret.mat[i][j] += (1LL*x.mat[i][k]*y.mat[k][j])%MOD, ret.mat[i][j] %= MOD; 40 return ret; 41 } 42 43 MA qpow(MA x, LL y) 44 { 45 MA s; 46 s.init(); 47 while(y) 48 { 49 if(y&1) s = mul(s, x); 50 x = mul(x, x); 51 y >>= 1; 52 } 53 return s; 54 } 55 56 MA tmp = { 57 1, 2, 1, 58 1, 0, 0, 59 0, 0, 1 60 }; 61 62 int main() 63 { 64 LL n, m; 65 while(scanf("%lld%lld",&n,&m)!=EOF) 66 { 67 MOD = m; 68 if(n<=2) 69 { 70 printf("%lld ", n%MOD); 71 continue; 72 } 73 74 MA s = tmp; 75 s = qpow(s, n-2); 76 77 LL ans = ((2LL*s.mat[0][0]%MOD + s.mat[0][1])%MOD+s.mat[0][2])%MOD; 78 printf("%lld ", ans); 79 } 80 }