zoukankan      html  css  js  c++  java
  • HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂

    题目链接:https://vjudge.net/problem/HDU-4965

    Fast Matrix Calculation

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 2057    Accepted Submission(s): 954


    Problem Description
    One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learning something about matrix, so he decided to make a crazy problem for her.

    Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.

    Step 1: Calculate a new N*N matrix C = A*B.
    Step 2: Calculate M = C^(N*N). 
    Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’.
    Step 4: Calculate the sum of all the elements in M’. 

    Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.
     
    Input
    The input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B.

    The end of input is indicated by N = K = 0.
     
    Output
    For each case, output the sum of all the elements in M’ in a line.
     
    Sample Input
    4 2 5 5 4 4 5 4 0 0 4 2 5 5 1 3 1 5 6 3 1 2 3 0 3 0 2 3 4 4 3 2 2 5 5 0 5 0 3 4 5 1 1 0 5 3 2 3 3 2 3 1 5 4 5 2 0 0
     
    Sample Output
    14 56
     
    Author
    SYSU
     
    Source

    题意:

    A为矩阵n*k,B为矩阵k*n,其中n<=1e3, k<=6。求 (A*B)^(n*n) 矩阵中所有项模6之和。

    题解:

    1.如果先计算 A*B的矩阵,然后再快速幂,那么矩阵最大可达:1e3*1e3,计算量是十分庞大的。

    2. (A*B)^(n*n) = A*B*A*B*A*B*A*B……*A*B = A*(B*A)^(n*n-1)*B,其中B*A最大只为6*6,因而可先用矩阵快速幂算出(B*A)^(n*n-1),然后再计算A*(B*A)^(n*n-1)*B。

    原理:矩阵乘法虽然不满足交换律,但是乘法的执行顺序却可以任意

    代码如下:

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <algorithm>
      5 #include <vector>
      6 #include <cmath>
      7 #include <queue>
      8 #include <stack>
      9 #include <map>
     10 #include <string>
     11 #include <set>
     12 using namespace std;
     13 typedef long long LL;
     14 const int INF = 2e9;
     15 const LL LNF = 9e18;
     16 //const int MOD = 1000000007;
     17 const int MAXN = 1e6+100;
     18 
     19 const int MOD = 6;
     20 const int Size = 6;
     21 struct MA
     22 {
     23     int mat[Size][Size];
     24     void init()
     25     {
     26         for(int i = 0; i<Size; i++)
     27         for(int j = 0; j<Size; j++)
     28             mat[i][j] = (i==j);
     29     }
     30 };
     31 
     32 MA mul(MA x, MA y)
     33 {
     34     MA ret;
     35     memset(ret.mat, 0, sizeof(ret.mat));
     36     for(int i = 0; i<Size; i++)
     37     for(int j = 0; j<Size; j++)
     38     for(int k = 0; k<Size; k++)
     39         ret.mat[i][j] += x.mat[i][k]*y.mat[k][j]%MOD, ret.mat[i][j] %= MOD;
     40     return ret;
     41 }
     42 
     43 MA qpow(MA x, LL y)
     44 {
     45     MA s;
     46     s.init();
     47     while(y)
     48     {
     49         if(y&1) s = mul(s, x);
     50         x = mul(x, x);
     51         y >>= 1;
     52     }
     53     return s;
     54 }
     55 
     56 int a[1000][6], b[6][1000], c[6][6], M1[1000][6], M2[1000][1000];
     57 int main()
     58 {
     59     int n, k;
     60     while(scanf("%d%d", &n,&k) &&(n||k))
     61     {
     62         memset(a, 0, sizeof(a));
     63         memset(b, 0, sizeof(b));
     64         memset(c, 0, sizeof(c));
     65 
     66         for(int i = 0; i<n; i++)
     67         for(int j = 0; j<k; j++)
     68             scanf("%d", &a[i][j]);
     69 
     70         for(int i = 0; i<k; i++)
     71         for(int j = 0; j<n; j++)
     72             scanf("%d", &b[i][j]);
     73 
     74         for(int i = 0; i<k; i++)
     75         for(int j = 0; j<k; j++)
     76         for(int t = 0; t<n; t++)
     77             c[i][j] += b[i][t]*a[t][j]%MOD, c[i][j] %= MOD;
     78 
     79         MA s;
     80         memcpy(s.mat, c, sizeof(s.mat));
     81         s = qpow(s, n*n-1);
     82         memcpy(c, s.mat, sizeof(c));
     83 
     84         memset(M1, 0, sizeof(M1));
     85         for(int i = 0; i<n; i++)
     86         for(int j = 0; j<k; j++)
     87         for(int t = 0; t<k; t++)
     88             M1[i][j] += a[i][t]*c[t][j], M1[i][j] %= MOD;
     89 
     90         memset(M2, 0, sizeof(M2));
     91         for(int i = 0; i<n; i++)
     92         for(int j = 0; j<n; j++)
     93         for(int t = 0; t<k; t++)
     94             M2[i][j] += M1[i][t]*b[t][j], M2[i][j] %= MOD;
     95 
     96         int ans = 0;
     97         for(int i = 0; i<n; i++)
     98         for(int j = 0; j<n; j++)
     99             ans += M2[i][j];
    100 
    101         printf("%d
    ", ans);
    102     }
    103 }
    View Code
  • 相关阅读:
    实战MEF(4):搜索范围
    实战MEF(3):只导出类的成员
    Mac 配置 php-fpm 时出现'/private/etc/php-fpm.conf': No such file or directory (2)
    如何实现在H5里调起高德地图APP?
    PHPExcel 基本用法详解
    最简单的css实现页面宽度自适应
    去掉IntelliJ IDEA 中 mybatis 对应的 xml 文件警告
    SQLyog恢复数据库报错解决方法【Error Code: 2006
    解决svn log显示no author,no date的方法之一
    Centos 7(Linux)环境下安装PHP(编译添加)相应动态扩展模块so(以openssl.so为例)
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/8417873.html
Copyright © 2011-2022 走看看