zoukankan      html  css  js  c++  java
  • LightOJ

    题目链接:https://vjudge.net/problem/LightOJ-1248

    1248 - Dice (III)
    Time Limit: 1 second(s) Memory Limit: 32 MB

    Given a dice with n sides, you have to find the expected number of times you have to throw that dice to see all its faces at least once. Assume that the dice is fair, that means when you throw the dice, the probability of occurring any face is equal.

    For example, for a fair two sided coin, the result is 3. Because when you first throw the coin, you will definitely see a new face. If you throw the coin again, the chance of getting the opposite side is 0.5, and the chance of getting the same side is 0.5. So, the result is

    1 + (1 + 0.5 * (1 + 0.5 * ...))

    = 2 + 0.5 + 0.52 + 0.53 + ...

    = 2 + 1 = 3

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.

    Each case starts with a line containing an integer n (1 ≤ n ≤ 105).

    Output

    For each case, print the case number and the expected number of times you have to throw the dice to see all its faces at least once. Errors less than 10-6 will be ignored.

    Sample Input

    Output for Sample Input

    5

    1

    2

    3

    6

    100

    Case 1: 1

    Case 2: 3

    Case 3: 5.5

    Case 4: 14.7

    Case 5: 518.7377517640

    题意:

    问一个n面的骰子平均要抛多少次才能使得每个面都至少朝上一次?

    题解:

    1.设dp[k]为对于这个n面骰子,在出现了k面的情况下,还要抛多少次才能使得所有面都至少朝上一次。

    2.可知: dp[k] = k/n*dp[k] + (n-k)/n*dp[k+1] + 1。移项得:dp[k] = dp[k+1] + n/(n-k) 。

    代码如下:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <vector>
     6 #include <cmath>
     7 #include <queue>
     8 #include <stack>
     9 #include <map>
    10 #include <string>
    11 #include <set>
    12 using namespace std;
    13 typedef long long LL;
    14 const int INF = 2e9;
    15 const LL LNF = 9e18;
    16 const int MOD = 1e9+7;
    17 const int MAXN = 1e5+100;
    18 
    19 double dp[MAXN];
    20 int main()
    21 {
    22     int T, n, kase = 0;
    23     scanf("%d", &T);
    24     while(T--)
    25     {
    26         scanf("%d", &n);
    27         dp[n] = 0;
    28         for(int i = n-1; i>=0; i--)
    29             dp[i] = dp[i+1]+1.0*n/(n-i);
    30         printf("Case %d: %.10lf
    ", ++kase, dp[0]);
    31     }
    32 }
    View Code
  • 相关阅读:
    一张900w的数据表,16s执行的SQL优化到300ms?
    webpack学习收集
    集合对象的string类型字段进行排序
    react 项目中使用antd的select组件placeholder不生效的解决方法
    React Hook做页面跳转以及携带参数,并且获取携带的值
    eclipse jar包 Source not found
    细说Redis分布式锁🔒
    Spring Boot中有多个@Async异步任务时,记得做好线程池的隔离!
    HDFS基本命令
    斐波那契数(Java)
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/8444681.html
Copyright © 2011-2022 走看看