zoukankan      html  css  js  c++  java
  • SPOJ

    题目链接:https://vjudge.net/problem/SPOJ-REPEATS

    REPEATS - Repeats

    no tags 

    A string s is called an (k,l)-repeat if s is obtained by concatenating k>=1 times some seed string t with length l>=1. For example, the string

    s = abaabaabaaba

    is a (4,3)-repeat with t = aba as its seed string. That is, the seed string t is 3 characters long, and the whole string s is obtained by repeating t 4 times.

    Write a program for the following task: Your program is given a long string u consisting of characters ‘a’ and/or ‘b’ as input. Your program must find some (k,l)-repeat that occurs as substring within u with k as large as possible. For example, the input string

    u = babbabaabaabaabab

    contains the underlined (4,3)-repeat s starting at position 5. Since u contains no other contiguous substring with more than 4 repeats, your program must output the maximum k.

    Input

    In the first line of the input contains H- the number of test cases (H <= 20). H test cases follow. First line of each test cases is n - length of the input string (n <= 50000), The next n lines contain the input string, one character (either ‘a’ or ‘b’) per line, in order.

    Output

    For each test cases, you should write exactly one interger k in a line - the repeat count that is maximized.

    Example

    Input:
    1
    17
    b
    a
    b
    b
    a
    b
    a
    a
    b
    a
    a
    b
    a
    a
    b
    a
    b
    
    Output:
    4
    
    since a (4, 3)-repeat is found starting at the 5th character of the input string.

    题意:

    给出一个字符串,求该字符串的重复次数最多的连续重复子串,输出重复次数。

    题解:

    论文上面的题。

    代码如下:

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <algorithm>
      5 #include <vector>
      6 #include <cmath>
      7 #include <queue>
      8 #include <stack>
      9 #include <map>
     10 #include <string>
     11 #include <set>
     12 using namespace std;
     13 typedef long long LL;
     14 const int INF = 2e9;
     15 const LL LNF = 9e18;
     16 const int MOD = 1e9+7;
     17 const int MAXN = 5e4+100;
     18 
     19 bool cmp(int *r, int a, int b, int l)
     20 {
     21     return r[a]==r[b] && r[a+l]==r[b+l];
     22 }
     23 
     24 int r[MAXN], sa[MAXN], Rank[MAXN], height[MAXN];
     25 int t1[MAXN], t2[MAXN], c[MAXN];
     26 void DA(int str[], int sa[], int Rank[], int height[], int n, int m)
     27 {
     28     n++;
     29     int i, j, p, *x = t1, *y = t2;
     30     for(i = 0; i<m; i++) c[i] = 0;
     31     for(i = 0; i<n; i++) c[x[i] = str[i]]++;
     32     for(i = 1; i<m; i++) c[i] += c[i-1];
     33     for(i = n-1; i>=0; i--) sa[--c[x[i]]] = i;
     34     for(j = 1; j<=n; j <<= 1)
     35     {
     36         p = 0;
     37         for(i = n-j; i<n; i++) y[p++] = i;
     38         for(i = 0; i<n; i++) if(sa[i]>=j) y[p++] = sa[i]-j;
     39 
     40         for(i = 0; i<m; i++) c[i] = 0;
     41         for(i = 0; i<n; i++) c[x[y[i]]]++;
     42         for(i = 1; i<m; i++) c[i] += c[i-1];
     43         for(i = n-1; i>=0; i--) sa[--c[x[y[i]]]] = y[i];
     44 
     45         swap(x, y);
     46         p = 1; x[sa[0]] = 0;
     47         for(i = 1; i<n; i++)
     48             x[sa[i]] = cmp(y, sa[i-1], sa[i], j)?p-1:p++;
     49 
     50         if(p>=n) break;
     51         m = p;
     52     }
     53 
     54     int k = 0;
     55     n--;
     56     for(i = 0; i<=n; i++) Rank[sa[i]] = i;
     57     for(i = 0; i<n; i++)
     58     {
     59         if(k) k--;
     60         j = sa[Rank[i]-1];
     61         while(str[i+k]==str[j+k]) k++;
     62         height[Rank[i]] = k;
     63     }
     64 }
     65 
     66 int dp[MAXN][20], mm[MAXN];
     67 void initRMQ(int n, int b[])
     68 {
     69     mm[0] = -1;
     70     for(int i = 1; i<=n; i++)
     71         dp[i][0] = b[i], mm[i] = ((i&(i-1))==0)?mm[i-1]+1:mm[i-1];
     72     for(int j = 1; j<=mm[n]; j++)
     73     for(int i = 1; i+(1<<j)-1<=n; i++)
     74         dp[i][j] = min(dp[i][j-1], dp[i+(1<<(j-1))][j-1]);
     75 }
     76 
     77 int RMQ(int x, int y)
     78 {
     79     if(x>y) swap(x, y);
     80     x++;
     81     int k = mm[y-x+1];
     82     return min(dp[x][k], dp[y-(1<<k)+1][k]);
     83 }
     84 
     85 int main()
     86 {
     87     int T, n;
     88     scanf("%d", &T);
     89     while(T--)
     90     {
     91         scanf("%d", &n);
     92         for(int i = 0; i<n; i++)
     93         {
     94             char ch;
     95             getchar();
     96             scanf("%c", &ch);
     97             r[i] = ch-'a'+1;
     98         }
     99         r[n] = 0;
    100         DA(r, sa, Rank, height, n, 3);
    101         initRMQ(n, height);
    102 
    103         int times = 0, L, R;
    104         for(int len = 1; len<=n; len++)
    105         for(int pos = 0; pos+len<n; pos += len)
    106         {
    107             int LCP = RMQ(Rank[pos], Rank[pos+len]);
    108             int supplement = len - LCP%len;
    109             int k = pos - supplement;
    110             if(k>=0 && LCP%len && RMQ(Rank[k],Rank[k+len])>=supplement)
    111                 LCP += supplement;
    112             times = max(times, LCP/len+1);
    113         }
    114         printf("%d
    ", times);
    115     }
    116 }
    View Code
  • 相关阅读:
    VC++对话框笔记
    STL中用erase()方法遍历删除元素
    VC++中不小心选错工程类型的解决办法
    directX中常用的数学计算
    VC++中string、char* 转换为LPCSTR
    判断空间上点是否在直线上
    vc6.0插件
    VC++常用定义(如SAFE_DELETE等)
    关于控件的AutoSize属性影响界面布局的问题解决
    C#判断日期是否正确(1900~今年,月份,天数)
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/8469450.html
Copyright © 2011-2022 走看看