zoukankan      html  css  js  c++  java
  • poj2019 二维RMQ裸题

    Cornfields
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions:8623   Accepted: 4100

    Description

    FJ has decided to grow his own corn hybrid in order to help the cows make the best possible milk. To that end, he's looking to build the cornfield on the flattest piece of land he can find. 

    FJ has, at great expense, surveyed his square farm of N x N hectares (1 <= N <= 250). Each hectare has an integer elevation (0 <= elevation <= 250) associated with it. 

    FJ will present your program with the elevations and a set of K (1 <= K <= 100,000) queries of the form "in this B x B submatrix, what is the maximum and minimum elevation?". The integer B (1 <= B <= N) is the size of one edge of the square cornfield and is a constant for every inquiry. Help FJ find the best place to put his cornfield. 

    Input

    * Line 1: Three space-separated integers: N, B, and K. 

    * Lines 2..N+1: Each line contains N space-separated integers. Line 2 represents row 1; line 3 represents row 2, etc. The first integer on each line represents column 1; the second integer represents column 2; etc. 

    * Lines N+2..N+K+1: Each line contains two space-separated integers representing a query. The first integer is the top row of the query; the second integer is the left column of the query. The integers are in the range 1..N-B+1. 

    Output

    * Lines 1..K: A single integer per line representing the difference between the max and the min in each query. 

    Sample Input

    5 3 1
    5 1 2 6 3
    1 3 5 2 7
    7 2 4 6 1
    9 9 8 6 5
    0 6 9 3 9
    1 2
    

    Sample Output

    5



    C++代码
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <set>
     6 #include <vector>
     7 #include <map>
     8 #include <queue>
     9 #include <set>
    10 #include <math.h>
    11 #include <algorithm>
    12 using namespace std;
    13 #define MAXN 250 + 5
    14 int dp[MAXN][MAXN][20];
    15 int dp1[MAXN][MAXN][20];
    16 int a[MAXN][MAXN];
    17 int n,m;
    18 void st(){
    19     for(int i=1;i<=n;i++)
    20     for(int k=0;(1<<k)<=m;k++){
    21     for(int j=1;j+(1<<k)-1<=m;j++){
    22         if(k==0){
    23             dp[i][j][k]=dp1[i][j][k]=a[i][j];
    24         }
    25         else {
    26             dp[i][j][k]=max(dp[i][j][k-1],dp[i][j+(1<<(k-1))][k-1]);
    27             dp1[i][j][k]=min(dp1[i][j][k-1],dp1[i][j+(1<<(k-1))][k-1]);
    28         }
    29     }
    30     }
    31 }
    32 int rmq2dmax(int x,int y,int x1,int y1){
    33     int k=log2(y1-y+1);
    34     int mm=max(dp[x][y][k],dp[x][y1-(1<<k)+1][k]);
    35     for(int i=x+1;i<=x1;i++)
    36         mm=max(mm,max(dp[i][y][k],dp[i][y1-(1<<k)+1][k]));
    37     return mm;
    38 }
    39 int rmq2dmin(int x,int y,int x1,int y1){
    40     int k=log2(y1-y+1);
    41     int mm=min(dp1[x][y][k],dp1[x][y1-(1<<k)+1][k]);
    42     for(int i=x+1;i<=x1;i++)
    43         mm=min(mm,min(dp1[i][y][k],dp1[i][y1-(1<<k)+1][k]));
    44     return mm;
    45 }
    46 
    47 
    48 int main(int argc, char const *argv[])
    49 {
    50     int b,k;
    51     scanf("%d%d%d",&n,&b,&k);
    52     m = n;
    53     for(int i = 1;i <= n; i++){
    54         for(int j = 1;j <= n ; j++){
    55             scanf("%d",&a[i][j]);
    56         }
    57     }
    58     st();
    59     while(k--){
    60         int p,q;
    61         scanf("%d%d",&p,&q);
    62         cout << rmq2dmax(p,q,p + b - 1,q + b - 1) - rmq2dmin(p,q,p + b - 1,q + b - 1)<< endl;
    63     }
    64     return 0;
    65 }
    二维RMQ
  • 相关阅读:
    脊椎有问题的7个信号
    SOHO兼职 SOHO一族 世界创业实验室
    MSTParser句法工具使用方法
    BinaryFormatter序列化实例
    C#中文件流,网络流,缓冲流等流的概念理解
    探讨和比较Java和_NET的序列化_Serialization_框架
    .net中对象序列化技术浅谈
    史上最详细最容易理解的HMM文章
    成功者足迹的综合总结:网络创业14条不外传的绝招
    此情何时休
  • 原文地址:https://www.cnblogs.com/DWVictor/p/11190343.html
Copyright © 2011-2022 走看看