2721: [Violet 5]樱花
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 499 Solved: 293
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
3
Sample Output
9
HINT
Source
Solution
巧妙!
$frac{1}{x}+frac{1}{y}=frac{1}{n!}$ 令$z=n!$
则可以得到$frac{1}{x}+frac{1}{y}=frac{1}{z}=>x=frac{yz}{y-z}$
再另$t=y-z$则可以得到$x=z+frac{z^{2}}{t}$
所以我们求$n!^{2}$的约数,就是答案,这就利用到线筛
Code
#include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> using namespace std; #define P 1000000007 #define LL long long int N,cnt,prime[1000100],z[1000100],tmp; bool flag[1000100]; LL ans=1LL; void Getprime() { flag[1]=1; cnt=0; for (int i=2; i<=N; i++) { if (!flag[i]) prime[++cnt]=i; for (int j=1; j<=cnt && prime[j]*i<=N; j++) { flag[i*prime[j]]=1; if (prime[j]%i==0) break; } } } void Calc(int x) { for (int i=prime[x]; i<=N; i+=prime[x]) for (int j=i; j%prime[x]==0; j/=prime[x]) z[x]++; } int main() { scanf("%d",&N); Getprime(); for (int i=1; i<=cnt; i++) Calc(i); for (int i=1; i<=cnt; i++) printf("%d ",z[i]); puts(""); for (int i=1; i<=cnt; i++) ans=((LL)ans*(z[i]<<1|1)%P)%P; printf("%lld ",ans); return 0; }