zoukankan      html  css  js  c++  java
  • 【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛

    题目链接:

    1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239

    1244:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244

    杜教筛裸题,不过现在我也只会筛这俩前缀和...

    $$s(n)=sum _{i=1}^{n}f(i)$$

    那么就有:

    $$sum_{i=1}^{n}f(i)lfloor frac{n}{i} floor=sum_{i=1}^{n}s(lfloor frac{n}{i} floor)=s(n)+sum_{i=2}^{n}s(lfloor frac{n}{i} floor)$$

    移项得到:

    $$s(n)=sum_{i=1}^{n}f(i)lfloor frac{n}{i} floor-sum_{i=2}^{n}s(lfloor frac{n}{i} floor)$$

    对于欧拉函数,$f(n)=phi(n)$

    $$sum_{i=1}^{n}phi(i)lfloor frac{n}{i} floor=sum_{i=1}^{n}sum_{d|n}phi(d)=sum_{i=1}^{n}i=frac{n*(n+1)}{2}$$

    对于莫比乌斯函数,$f(n)=mu(n)$

    $$sum_{i=1}^{n}mu(i)lfloor frac{n}{i} floor=sum_{i=1}^{n}sum_{d|n}mu(d)=sum_{i=1}^{n}[i=1]=1$$

    然后这两个公式就可以在线筛预处理$n^{frac{2}{3}}$只后记忆化达到$O(n^{frac{2}{3}})$的效率.

    值得注意的就是,记忆化要写hash,以及不要忘了取模,筛欧拉函数前缀和时牵扯取模和除2,可以先讨论奇偶除掉2再计算。

    1239:

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    using namespace std;
    #define LL long long
    #define N 5000000
    #define P 233333
    #define MAXN 250000
    #define MO 1000000007
    int cnt,prime[N+10],flag[N+10];
    LL X,phi[N+10];
    inline void Pre(LL n)
    {
    	flag[1]=1; phi[1]=1;
    	for (LL i=2; i<=n; i++)
    		{
    			if (!flag[i]) prime[++cnt]=i,phi[i]=i-1;
    			for (int j=1; j<=cnt && i*prime[j]<=n; j++)
    				{
    					flag[i*prime[j]]=1;
    					if (!(i%prime[j])) {phi[i*prime[j]]=phi[i]*prime[j]; break;}
    					phi[i*prime[j]]=phi[i]*(prime[j]-1);
    				}
    		}
    	for (LL i=1; i<=n; i++) phi[i]=(phi[i]+phi[i-1])%MO;
    }
    struct Hash{
    	int next; LL i,x;
    }mp[MAXN];
    int head[MAXN],tot;
    inline void Add(LL i,LL x) {int pos=i%P; tot++; mp[tot].next=head[pos]; head[pos]=tot; mp[tot].i=i; mp[tot].x=x;}
    inline LL Sum(LL x)
    {
    	if (x<=N) return phi[x];
    	else 
    		{
    			int pos=x%P;
    			for (int i=head[pos]; i; i=mp[i].next)
    				if (mp[i].i==x) {return mp[i].x;}	
    		} 
    	LL sum=0,s=0;
    	for (LL i=2,j; i<=x; i=j+1) 
    		j=x/(x/i),(sum+=Sum(x/i)%MO*(j-i+1)%MO)%=MO;
    	if (x&1) s=(((x+1)/2)%MO)*(x%MO)%MO; else s=((x/2)%MO)*((x+1)%MO)%MO;
    	sum=(s-sum+MO)%MO;
    	Add(x,sum);
    	return sum; 
    }
    int main()
    {
    	scanf("%lld",&X);
    	Pre(N);
    	printf("%lld
    ",Sum(X));
    	return 0;
    }
    

    1244

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<cmath>
    using namespace std;
    #define LL long long
    #define P 233333
    #define N 5000000
    #define MAXN 250000
    int cnt,prime[N+10],flag[N+10];
    LL L,R,mu[N+10];
    inline void Pre(LL n)
    {
    	flag[1]=1; mu[1]=1;
    	for (LL i=2; i<=n; i++)
    		{
    			if (!flag[i]) prime[++cnt]=i,mu[i]=-1;
    			for (int j=1; j<=cnt && i*prime[j]<=n; j++)
    				{
    					flag[i*prime[j]]=1;
    					if (!(i%prime[j])) {mu[i*prime[j]]=0; break;}
    					mu[i*prime[j]]=-mu[i];
    				}
    		}
    	for (LL i=1; i<=n; i++) mu[i]+=mu[i-1];
    }
    struct Hash{
    	int next; LL i,x;
    }mp[MAXN];
    int head[MAXN],tot;
    inline void Add(LL i,LL x) {int pos=i%P; tot++; mp[tot].next=head[pos]; head[pos]=tot; mp[tot].i=i; mp[tot].x=x;}
    inline LL Sum(LL x)
    {
    	if (x<=N) return mu[x];
    	else 
    		{
    			int pos=x%P;
    			for (int i=head[pos]; i; i=mp[i].next)
    				if (mp[i].i==x) {return mp[i].x;}	
    		} 
    	LL sum=0;
    	for (LL i=2,j; i<=x; i=j+1)
    		j=x/(x/i),sum+=Sum(x/i)*(j-i+1);
    	Add(x,1LL-sum);
    	return 1LL-sum;
    }
    int main()
    {
    	scanf("%lld%lld",&L,&R);
    	Pre(N);
    	printf("%lld
    ",Sum(R)-Sum(L-1));
    	return 0;
    }
    
  • 相关阅读:
    Android studio界面相关设置
    HIVE和HBASE区别
    《梦断代码》经典语录--持续更新
    幽灵漏洞(Ghost gethost)
    服务化实战之 dubbo、dubbox、motan、thrift、grpc等RPC框架比较及选型
    thrift使用总结
    thrift学习总结
    IntelliJ IDEA配置Tomcat(完整版教程)
    sudo执行脚本找不到环境变量和命令
    W-TinyLFU——设计一个现代的缓存
  • 原文地址:https://www.cnblogs.com/DaD3zZ-Beyonder/p/6272239.html
Copyright © 2011-2022 走看看