zoukankan      html  css  js  c++  java
  • Fast Fourier Transform in C# (CookyTurkey)

    C# code snippet below is an illustration of the Cooky-Turkey algorithm, the performance may suck when processing huge datasets, but you can use arrays of double instead of arrays of complex number structure to reduce the performance impact by object initializations and method invocations(overloaded operators).
    Furthermore, you can use "Butterfly" computation(http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html) to gain a much better performance.

    private Complex[] FFT(Complex[] input,bool invert)
    {
        
    if (input.Length == 1)
        {
            
    return new Complex[] { input[0] };
        }
        
    int length = input.Length;
        
    int half = length / 2;
        Complex[] result 
    = new Complex[length];
        
    double fac = -2.0 * Math.PI / length;
        
    if (invert)
        {
            fac 
    = -fac;
        }

        Complex[] evens 
    = new Complex[half];
        
    for (int i = 0; i < half; i++)
        {
            evens[i] 
    = input[2 * i];
        }
        Complex[] evenResult 
    = FFT(evens,invert);

        Complex[] odds 
    = evens;
        
    for (int i = 0; i < half; i++)
        {
            odds[i] 
    = input[2 * i + 1];
        }
        Complex[] oddResult 
    = FFT(odds,invert);

        
    for (int k = 0; k < half; k++)
        {
            
    double fack = fac * k;
            Complex oddPart 
    = oddResult[k] * new Complex(Math.Cos(fack), Math.Sin(fack));
            result[k] 
    = evenResult[k] + oddPart;
            result[k 
    + half] = evenResult[k] - oddPart;
        }

        
    return result;
    }


  • 相关阅读:
    LintCode: Climbing Stairs
    LintCode: Binary Tree Postorder Traversal
    LintCode: Binary Tree Preorder Traversal
    LintCode: Binary Tree Inorder Traversal
    Lintcode: Add Two Numbers
    Lintcode: Add Binary
    LintCode: A + B Problem
    LintCode: Remove Linked List Elements
    LintCode:Fibonacci
    Lintcode开刷
  • 原文地址:https://www.cnblogs.com/Dah/p/850904.html
Copyright © 2011-2022 走看看