zoukankan      html  css  js  c++  java
  • 【POJ 3169 Layout】

    Time Limit: 1000MS
    Memory Limit: 65536K

    Total Submissions: 12565
    Accepted: 6043

    Description

    Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).
    Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
    Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

    Input

    Line 1: Three space-separated integers: N, ML, and MD.
    Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
    Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

    Output

    Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

    Sample Input

    4 2 1
    1 3 10
    2 4 20
    2 3 3

    Sample Output

    27

    Hint

    Explanation of the sample:
    There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
    The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

    Source

    USACO 2005 December Gold

     

    【题解】

          ①区间前缀和差分约束

          ②对于有解的问题dfs_SPFA很慢

          ③推荐双端队列和fread读入优化

    #include<queue>
    #include<stdio.h>
    #define inf 1000000007
    #define go(i,a,b) for(int i=a;i<=b;i++)
    #define fo(i,a,x) for(int i=a[x],v=e[i].v;i;i=e[i].next,v=e[i].v)
    const int N=2003;bool inq[N];
    struct E{int v,next,w;}e[N*200];
    int n,X,Y,A,B,D,head[N],k=1,d[N],negative;
    void ADD(int u,int v,int w){e[k]=(E){v,head[u],w};head[u]=k++;}
    
    inline char Getchar()
    {
    	static char C[1000000],*p1,*p2;
    	if(p1==p2)p2=(p1=C)+fread(C,1,1000000,stdin);
    	if(p1==p2)return EOF;return *p1++;
    }
    
    inline void Read(int &x)
    {
    	x=0;char c=Getchar();
    	while(c<'0'||c>'9')c=Getchar();
    	while(c>='0'&&c<='9')x=x*10+c-'0',c=Getchar();
    }
    
    void Build()
    {
    	go(i,1,X)Read(A),Read(B),Read(D),ADD(A,B,D);
    	go(i,1,Y)Read(A),Read(B),Read(D),ADD(B,A,-D);
    	go(i,2,n)ADD(i,i-1,0);
    }
    
    std::queue<int>q;
    void SPFA()
    {
    	go(i,1,n)d[i]=inf;d[1]=0;q.push(1);int vis[N]={0};
    	while(!q.empty()){int u=q.front();q.pop();inq[u]=0;
    	fo(i,head,u)if(d[u]+e[i].w<d[v])
    	{
    		d[v]=d[u]+e[i].w;
    		if(++vis[v]>n){negative=1;return;}
    		!inq[v]?q.push(v),inq[v]=1:1;}
    	}
    }
    
    int main()
    {	
    	Read(n);Read(X);Read(Y);
    
    	Build();   SPFA();
    	
    	if(negative){puts("-1");return 0;}
    	if(d[n]==inf){puts("-2");return 0;}
    	if(d[n]!=inf){printf("%d
    ",d[n]);return 0;}
    }//Paul_Guderian
    

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    .

  • 相关阅读:
    oracle过期备份未删除导致磁盘撑爆
    数据文件、监听日志、告警日志、redo日志、归档日志的迁移
    linux软件卸载命令
    Nginx版本平滑升级方案
    rsync 服务搭建
    在node节点部署kubectl管理k8s集群
    源码编译安装nginx及设置开机启动项
    K8S日常运维中关于“ImagePullBackOff”报错的处理思路分析
    查看所有日志命令:journalctl
    Docker编排工具Docker Compose的使用
  • 原文地址:https://www.cnblogs.com/Damitu/p/7797950.html
Copyright © 2011-2022 走看看