zoukankan      html  css  js  c++  java
  • 题解 点双连通图计数

    题目传送门

    题目大意

    给出(n),求出(n)个点的图满足该图为一个点双连通分量的方案数。

    前置知识

    • 拓展拉格朗日反演

    • 多项式指数函数、对数函数

    思路

    如果做过有标号无向连通图计数就最好了。

    我们来重温一下,我们设有标号无向图的指数生成函数为(F(x)),可以得到:

    [F(x)=sum_{i=0}^{infty} frac{2^{inom{i}{2}}}{i!}x^i ]

    这里的(2^{inom{i}{2}})就是每条边要或者不要。

    我们再设有标号无向连通图的指数生成函数为(G(x)),可以得到:

    [G(x)=sum_{i=0}^{infty} frac{F^i(x)}{i!}=e^{F(x)} ]

    [Rightarrow F(x)=ln G(x) ]

    我们现在再设(D(x))为有标号有根无向连通图,可以得到:

    [[x^n]D(x)=n[x^n]G(x) ]

    我们再设(b_i)(i)个点的无根点双联通分量的个数,我们可以得到:

    [D(x)=xe^{sum_{i=1}^{infty} b_{i+1}frac{D^i(x)}{i!}} ]

    感性理解就是说,一个有标号有根无向连通图我们把根所在的点双提出来,上面每个点对应了一个连通块的根,除以(i!)是因为图是不讲顺序的。最重要的一点是每个联通块之间互不干涉,所以不会影响根所在的点双连通分量大小

    如果我们设:

    [B(x)=sum_{i} b_{i+1} frac{x^i}{i!} ]

    那我们就可以得到:

    [D(x)=xe^{B(D(x))} ]

    [Rightarrow B(D(x))=ln frac{D(x)}{x} ]

    [Rightarrow B(x)=ln frac{x}{D^{-1}(x)} ]

    这里的(D^{-1}(x))是指的(D(x))的复合逆函数,即:

    [D^{-1}(D(x))=x ]

    我们设(H(x)=ln frac{D(x)}{x}),可以得到:

    [B(x)=H(D^{-1}(x)) ]

    这里使用拓展拉格朗日反演公式可以得到:

    [[x^n]B(x)=[x^n]H(D^{-1}(x)) ]

    [=frac{1}{n}[x^{-1}]H^{'}(x)(frac{1}{D(x)})^n ]

    [=frac{1}{n}[x^{n-1}]H^{'}(x)(frac{x}{D(x)})^n ]

    这里使用多项式快速幂公式就可以得到:

    [=frac{1}{n}[x^{n-1}]H^{'}(x)e^{-nln frac{D(x)}{x}} ]

    [=frac{1}{n}[x^{n-1}]H^{'}(x)e^{-nH(x)} ]

    于是,我们就可以在(Theta(nlog n))的时间复杂度内解决这个问题了。不过不知道为什么我的常熟异常的大,开了( ext {O}_2)还没有别人不开( ext {O}_2)跑得快。为我自己默哀。。。

    ( ext {Code})

    #include <bits/stdc++.h>
    using namespace std;
    
    #define Int register int
    #define mod 998244353
    #define Gii 332748118
    #define ll long long
    #define MAXN 600005
    #define Gi 3
    
    int quick_pow (int a,int b){
    	int res = 1;for (;b;b >>= 1,a = 1ll * a * a % mod) if (b & 1) res = 1ll * res * a % mod;
    	return res;
    }
    
    int limit,l,r[MAXN];
    
    void NTT (int *a,int type){
    	for (Int i = 0;i < limit;++ i) if (i < r[i]) swap (a[i],a[r[i]]);
    	for (Int mid = 1;mid < limit;mid <<= 1){
    		int Wn = quick_pow (type == 1 ? Gi : Gii,(mod - 1) / (mid << 1));
    		for (Int R = mid << 1,j = 0;j < limit;j += R){
    			for (Int k = 0,w = 1;k < mid;++ k,w = 1ll * w * Wn % mod){
    				int x = a[j + k],y = 1ll * w * a[j + k + mid] % mod;
    				a[j + k] = (x + y) % mod,a[j + k + mid] = (x + mod - y) % mod;
    			}
    		}
    	} 
    	if (type == 1) return ;
    	int Inv = quick_pow (limit,mod - 2);
    	for (Int i = 0;i < limit;++ i) a[i] = 1ll * a[i] * Inv % mod;
    }
    
    int c[MAXN];
    
    void Solve (int len,int *a,int *b){
    	if (len == 1) return b[0] = quick_pow (a[0],mod - 2),void ();
    	Solve ((len + 1) >> 1,a,b);
    	limit = 1,l = 0;
    	while (limit < (len << 1)) limit <<= 1,l ++;
    	for (Int i = 0;i < limit;++ i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
    	for (Int i = 0;i < len;++ i) c[i] = a[i];
    	for (Int i = len;i < limit;++ i) c[i] = 0;
    	NTT (c,1);NTT (b,1);
    	for (Int i = 0;i < limit;++ i) b[i] = 1ll * b[i] * (2 + mod - 1ll * c[i] * b[i] % mod) % mod;
    	NTT (b,-1);
    	for (Int i = len;i < limit;++ i) b[i] = 0;
    }
    
    void deravitive (int *a,int n){
    	for (Int i = 1;i <= n;++ i) a[i - 1] = 1ll * a[i] * i % mod;
    	a[n] = 0;
    }
    
    void inter (int *a,int n){
    	for (Int i = n;i >= 1;-- i) a[i] = 1ll * a[i - 1] * quick_pow (i,mod - 2) % mod;
    	a[0] = 0;
    }
    
    int b[MAXN];
    
    void Ln (int *a,int n){
    	memset (b,0,sizeof (b));
    	Solve (n,a,b);deravitive (a,n);
    	while (limit <= n) limit <<= 1,l ++;
    	for (Int i = 0;i < limit;++ i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
    	NTT (a,1),NTT (b,1);
    	for (Int i = 0;i < limit;++ i) a[i] = 1ll * a[i] * b[i] % mod;
    	NTT (a,-1),inter (a,n);
    	for (Int i = n + 1;i < limit;++ i) a[i] = 0;
    }
    
    int F0[MAXN];
    
    void Exp (int *a,int *B,int n)
    {
    	if (n == 1) return B[0] = 1,void ();
    	Exp (a,B,(n + 1) >> 1);
    	for (Int i = 0;i < limit;++ i) F0[i] = B[i];
    	Ln (F0,n);
    	F0[0] = (a[0] + 1 + mod - F0[0]) % mod;
    	for (Int i = 1;i < n;++ i) F0[i] = (a[i] + mod - F0[i]) % mod;
    	NTT (F0,1);NTT (B,1);	
    	for (Int i = 0;i < limit;++ i) B[i] = 1ll * F0[i] * B[i] % mod;
    	NTT (B,-1);
    	for (Int i = n;i < limit;++ i) B[i] = 0;
    }
    
    int read ()
    {
    	int x = 0;char c = getchar();int f = 1;
    	while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}
    	while (c >= '0' && c <= '9'){x = (x << 3) + (x << 1) + c - '0';c = getchar();}
    	return x * f;
    }
    
    void write (int x)
    {
    	if (x < 0){x = -x;putchar ('-');}
    	if (x > 9) write (x / 10);
    	putchar (x % 10 + '0');
    }
    
    int fac[MAXN],caf[MAXN],lim = 3e5;
    
    void init (){
    	fac[0] = 1;for (Int i = 1;i <= lim;++ i) fac[i] = 1ll * fac[i - 1] * i % mod;
    	caf[lim] = quick_pow (fac[lim],mod - 2);for (Int i = lim;i;-- i) caf[i - 1] = 1ll * caf[i] * i % mod;
    } 
    
    int H[MAXN],H_[MAXN],G[MAXN],FG[MAXN];
    
    void prepare (){
    	int len = 1 << 17,lll = 17;
    	for (Int i = 0;i < len;++ i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << lll - 1);
    	for (Int i = 0;i < len;++ i) H[i] = 1ll * quick_pow (2,1ll * i * (i - 1) / 2 % (mod - 1)) * caf[i] % mod;
    	Ln (H,len - 1);
    	for (Int i = 0;i < len;++ i) H[i] = 1ll * H[i + 1] * (i + 1) % mod;H[len - 1] = 0;
    	Ln (H,len - 1);
    	for (Int i = 0;i < len;++ i) H_[i] = H[i];limit = 1 << 18,l = 18;
    	for (Int i = 0;i < limit;++ i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << l - 1);
    	deravitive (H_,len - 1),NTT (H_,1); 
    }
    
    void work (int n){
    	if (!(-- n)) return puts ("1"),void ();
    	limit = 1 << 17,l = 17;
    	memset (F0,0,sizeof (F0)),memset (FG,0,sizeof (FG));
    	for (Int i = 0;i < limit;++ i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << l - 1);
    	for (Int i = 0;i < limit;++ i) G[i] = 1ll * H[i] * (mod - n) % mod;
    	Exp (G,FG,1 << 17),limit = 1 << 18,l = 18;
    	for (Int i = 0;i < limit;++ i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << l - 1);
    	NTT (FG,1);for (Int i = 0;i < limit;++ i) FG[i] = 1ll * FG[i] * H_[i] % mod;NTT (FG,-1); 
    	write (1ll * FG[n - 1] * fac[n - 1] % mod),putchar ('
    ');
    }
    
    signed main(){
    	init (),prepare ();
    	for (Int i = 1;i <= 5;++ i) work (read ());
    	return 0;
    }
    
  • 相关阅读:
    mysql各个版本下载地址
    hadoop-0.20.2完全分布式集群
    04_Spring中使用Quartz
    03_CronTrigger
    02_SimpleTrigger
    02_ActiveMQ入门
    01_JMS概述
    01_Quartz基础结构
    Java开发高性能网站需要关注的事
    06_Jedis完成MySQL的条件查询案例
  • 原文地址:https://www.cnblogs.com/Dark-Romance/p/13285081.html
Copyright © 2011-2022 走看看