zoukankan      html  css  js  c++  java
  • P4560 [IOI2014]Wall 砖墙

    题目描述

    给定一个长度为 nn且初始值全为 00的序列。你需要支持以下两种操作:

    • Add L, R, hL,R,h:将序列 [L, R][L,R]内所有值小于 hh的元素都赋为 hh,此时不改变高度大于 hh的元素值
    • Remove L, R, hL,R,h:将序列 [L, R][L,R]内所有值大于 hh的元素都赋为 hh,此时不改变高度小于 hh的元素值

    你需要输出进行 kk次上述操作之后的序列。

    解析

    显然每次操作会对一段区间的取值范围造成影响,那么不妨我们维护区间取值的上下界,就可以轻松A掉这题。

    最简单的方法就是线段树(不过貌似有人高级数据结构T了233)

    那么维护上下界实质上也就是维护区间最大最小值,所以我们每次打个lazytag以保留操作对区间的影响就行了。注意是打标记而不是维护信息,我们不用区间查询,维护了这堆信息也没用,还浪费时间。。。

    最后输出我们把lazytag造成的所有影响很好的维护出来,再遍历一次整棵线段树输出叶子节点的lazytag就行了。

    那如何维护lazytag呢?我们就要关注pushdown怎么弄。

    (up(h),down(h))分别对应在线段树上进行Add,Remove两种操作,改变的高度为(h)

    对于(up(h)),设改变的区间上下界为(u,d)

    1. (x<d),不会对区间造成影响
    2. (d<x<u),此时(d)变为(x)(u)不变
    3. (x>u),此时(d,u)都变为(x)

    参考代码

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<cstring>
    #include<ctime>
    #include<cstdlib>
    #include<algorithm>
    #include<queue>
    #include<set>
    #include<map>
    #define INF 0x3f3f3f3f
    #define N 2000010
    using namespace std;
    inline int read()
    {
    	int f=1,x=0;char c=getchar();
    	while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    	while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    	return x*f;
    }
    struct node{
    	int l,r;
    	int up,down;
    }t[N<<2];
    int n,k;
    inline void pushdown(int p)
    {
    	if(p==0) return;
    	if(t[p].up!=0){
    		t[p<<1].up=max(t[p].up,t[p<<1].up);
    		t[p<<1|1].up=max(t[p].up,t[p<<1|1].up);
    		if(t[p<<1].down<t[p].up) t[p<<1].down=t[p].up;
    		if(t[p<<1|1].down<t[p].up) t[p<<1|1].down=t[p].up;
    		t[p].up=0;
    	}
    	if(t[p].down!=INF){
    		t[p<<1].down=min(t[p].down,t[p<<1].down);
    		t[p<<1|1].down=min(t[p].down,t[p<<1|1].down);
    		if(t[p<<1].up>t[p].down) t[p<<1].up=t[p].down;
    		if(t[p<<1|1].up>t[p].down) t[p<<1|1].up=t[p].down;
    		t[p].down=INF;
    	}
    }
    inline void build(int p,int l,int r)
    {
    	t[p].l=l,t[p].r=r;t[p].up=0,t[p].down=INF;
    	if(l==r) return;
    	int mid=(l+r)>>1;
    	build(p<<1,l,mid);
    	build(p<<1|1,mid+1,r);
    }
    inline void up(int p,int l,int r,int val)
    {
    	if(l<=t[p].l&&t[p].r<=r){
    		t[p].up=max(t[p].up,val);
    		t[p].down=max(val,t[p].down);
    		return;
    	}
    	pushdown(p);
    	int mid=(t[p].l+t[p].r)>>1;
    	if(l<=mid) up(p<<1,l,r,val);
    	if(r>mid) up(p<<1|1,l,r,val);
    }
    inline void down(int p,int l,int r,int val)
    {
    	if(l<=t[p].l&&t[p].r<=r){
    		t[p].down=min(t[p].down,val);
    		t[p].up=min(t[p].up,val);
    		return;
    	}
    	pushdown(p);
    	int mid=(t[p].l+t[p].r)>>1;
    	if(l<=mid) down(p<<1,l,r,val);
    	if(r>mid) down(p<<1|1,l,r,val);
    }
    inline void query(int p,int l,int r)
    {
    	if(t[p].l==t[p].r){
    		printf("%d
    ",t[p].up);
    		return;
    	}
    	pushdown(p);
    	int mid=(t[p].l+t[p].r)>>1;
    	if(l<=mid) query(p<<1,l,r);
    	if(r>mid) query(p<<1|1,l,r);
    }
    int main()
    {
    	n=read(),k=read();
    	build(1,1,n);
    	for(int i=1;i<=k;++i){
    		int cmd=read(),l=read(),r=read(),val=read();
    		++l,++r;
    		if(cmd==1) up(1,l,r,val);
    		else down(1,l,r,val);
    	}
    	query(1,1,n);
    	return 0;
    }
    
  • 相关阅读:
    Win7 配置Android开发环境 狼人:
    Windows Phone 7 Tips (3) 狼人:
    Windows Phone 7 Tips (1) 狼人:
    探索移动Web网页编码设计 狼人:
    初探AIR for Android开发 狼人:
    Android设计趋势分析10则 狼人:
    Android与服务器端数据交互 狼人:
    Android UI基本测验:线性布局 狼人:
    Android用户界面设计:线性布局 狼人:
    Eclipse开发Android应用程序入门:重装上阵 狼人:
  • 原文地址:https://www.cnblogs.com/DarkValkyrie/p/11617998.html
Copyright © 2011-2022 走看看