zoukankan      html  css  js  c++  java
  • P1436 棋盘分割[dp]

    题目描述

    将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘。(每次切割都只能沿着棋盘格子的边进行)

    img

    原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和。现在需要把棋盘按上述规则分割成n块矩形棋盘,并使各矩形棋盘总分的平方和最小。

    请编程对给出的棋盘及n,求出平方和的最小值。

    解析

    (dp[k][i][j][x][y])表示当前在切第k刀,当前切((i,j))为左上角,((x,y))为右下角的矩形的最小平方和。

    考虑状态转移,一个状态转移到下一个时,它可以继续往两个部分切下去,也就是往两个方向转移。

    采用前缀和优化,其中(calc(i,j,x,y))表示以((i,j))为左上角,((x,y))为右下角的矩形的和的平方。

    [dp[k][i][j][x][y]=min(dp[k][i][j][x][y],dp[k-1][i'+1][j][x][y]+calc(i,j,i',y), \dp[k-1][i][j][x'][y]+calc(x'+1,j,x,y)) ]

    [dp[k][i][j][x][y]=min(dp[k][i][j][x][y],dp[k-1][i][j'+1][x][y]+clac(i,j,x,j'), \dp[k-1][i][j][x][y']+calc(i,y',x,y)) ]

    初始化显然是切第0刀时,切任意矩形的最小平方和就是不切,就是该矩形的和的平方。

    之前的思路和这个稍稍有些不同,我定义dp数组为当前切剩下((i,j))为左上角,((x,y))为右下角的矩形的最小平方和,那么就需要四个转移,但是我转移写炸了(摊。

    参考代码

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    #include<string>
    #include<cstdlib>
    #include<queue>
    #include<vector>
    #define INF 0x3f3f3f3f
    #define PI acos(-1.0)
    #define N 11
    #define MOD 2520
    #define E 1e-12
    using namespace std;
    int dp[16][N][N][N][N],mp[N][N],n;
    inline int read()
    {
    	int f=1,x=0;char c=getchar();
    	while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    	while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    	return x*f;
    }
    inline int calc(int x1,int y1,int x2,int y2)
    {
    	if(x1>x2) swap(x1,x2);
    	if(y1>y2) swap(y1,y2);
    	return (mp[x2][y2]-mp[x1-1][y2]-mp[x2][y1-1]+mp[x1-1][y1-1])*(mp[x2][y2]-mp[x1-1][y2]-mp[x2][y1-1]+mp[x1-1][y1-1]);
    }
    int main()
    {
    	n=read();
    	memset(dp,0x3f,sizeof(dp));
    	memset(dp[0],0,sizeof(dp[0]));
    	for(int i=1;i<=8;++i)
    		for(int j=1;j<=8;++j){
    			dp[0][i][j][i][j]=mp[i][j]=read();
    			mp[i][j]+=mp[i-1][j]+mp[i][j-1]-mp[i-1][j-1];
    		}
    	for(int i=1;i<=8;++i)
    		for(int j=1;j<=8;++j)
    			for(int x=i;x<=8;++x)
    				for(int y=j;y<=8;++y)
    					dp[0][i][j][x][y]=calc(i,j,x,y);     
    	for(int k=1;k<n;++k){
    		for(int i=1;i<=8;++i)
    			for(int j=1;j<=8;++j)
    				for(int x=i;x<=8;++x)
    					for(int y=j;y<=8;++y){
    						for(int dx=i;dx<=x;++dx)
    							dp[k][i][j][x][y]=min(dp[k][i][j][x][y],min(dp[k-1][i][j][dx][y]+calc(dx+1,j,x,y),dp[k-1][dx+1][j][x][y]+calc(i,j,dx,y)));
    						for(int dy=j;dy<=y;++dy)
    							dp[k][i][j][x][y]=min(dp[k][i][j][x][y],min(dp[k-1][i][j][x][dy]+calc(i,dy+1,x,y),dp[k-1][i][dy+1][x][y]+calc(i,j,x,dy)));
    					}
    	}
    	cout<<dp[n-1][1][1][8][8]<<endl;
    	return 0;
    }
    
  • 相关阅读:
    多态
    封装
    继承
    面向对象
    2.机器学习相关数学基础
    作业1 机器学习概述
    作业15 语法制导的语义翻译
    作业14 算符优先分析
    作业13 自下而上语法分析
    作业12 实验二 递归下降语法分析
  • 原文地址:https://www.cnblogs.com/DarkValkyrie/p/11673506.html
Copyright © 2011-2022 走看看