题目传送门
分析:
我们要求
(frac{1}{n(n-1)}sum_{i=1}^{n}sum_{j=1}^{n}varphi(a_{i}a_j)dist(i,j))
先看一下怎么求(varphi(a_{i}a_j))
回归欧拉函数本质的式子:
(varphi(xy)=xyprod_{p|xy}(1-frac{1}{p}))
(varphi(x)varphi(y)=xyprod_{p|x}(1-frac{1}{p})prod_{p|y}(1-frac{1}{p}))
两式相除:
(frac{varphi(x)varphi(y)}{varphi(xy)}=frac{prod_{p|x}(1-frac{1}{p})prod_{p|y}(1-frac{1}{p})}{prod_{p|xy}(1-frac{1}{p})})
(感性)推理一下
(~~~~frac{varphi(x)varphi(y)}{varphi(xy)})
(=prod_{p|gcd(x,y)}(1-frac{1}{p}))
(=frac{varphi(gcd(x,y))}{gcd(x,y)})
所以
(varphi(xy)=frac{varphi(x)varphi(y)gcd(x,y)}{varphi(gcd(x,y))})
于是开始推式子:
(~~~~sum_{i=1}^{n}sum_{j=1}^{n}varphi(a_{i}a_j)dist(a_i,a_j))
(=sum_{i=1}^{n}sum_{j=1}^{n}frac{varphi(a_i)varphi(a_j)gcd(a_i,a_j)}{varphi(gcd(a_i,a_j))}dist(i,j))
枚举(gcd(a_i,a_j)=d)
(=sum_{d=1}^{n}frac{d}{varphi(d)}sum_{i=1}^{n}sum_{j=1}^{n}[gcd(a_i,a_j)=d]varphi(a_i)varphi(a_j)dist(i,j))
令(f(d)=sum_{i=1}^{n}sum_{j=1}^{n}[gcd(a_i,a_j)=d]varphi(a_i)varphi(a_j)dist(i,j))
不好求
我们再令(F(d)=sum_{i=1}^{n}sum_{j=1}^{n}[d|gcd(a_i,a_j)]varphi(a_i)varphi(a_j)dist(i,j))
可以看出(F(i)=sum_{d|i}f(d))
于是乎(f(i)=sum_{d|i}mu(frac{i}{d})F(d))
我们知道(F(d))后,便可以(O(nlogn))的时间求出(f(d))
考虑每一个(d),由于(d|gcd(a_i,a_j)),所以满足(d|a_i)的点都会加入,即(lfloorfrac{n}{d}
floor)个点
总点数是(O(nlogn))级别
对于每个(d),构建虚树,设其中有(m)个点,设(v_i=varphi(a_i))
(F(d)=sum_{i=1}^{m}sum_{j=1}^{m}v_i v_j dist(i,j))
(=sum_{i=1}^{m}sum_{j=1}^{m}v_i v_j (dpt(i)+dpt(j)-2dpt(LCA(i,j))))
展开
(=sum_{i=1}^{m}sum_{j=1}^{m}v_i v_j dpt(i)+sum_{i=1}^{m}sum_{j=1}^{m}v_i v_j dpt(j)-2sum_{i=1}^{m}sum_{j=1}^{m}v_i v_j dpt(LCA(i,j)))
前面俩其实等价
(=2sum_{i=1}^{m}sum_{j=1}^{m}v_i v_j dpt(i)-2sum_{i=1}^{m}sum_{j=1}^{m}v_i v_j dpt(LCA(i,j)))
前面的直接预处理可以算,后面的树形(dp)计算每个点为(LCA)时整棵子树的总和
于是这道题就解决了,复杂度(O(nlog^{2}n))
一道很好(丧病)的数论大礼包+虚树+树形dp的题
写好了调半天
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<iostream>
#include<map>
#include<bitset>
#include<string>
#define maxn 400005
#define INF 0x3f3f3f3f
#define MOD 1000000007
using namespace std;
inline long long getint()
{
long long num=0,flag=1;char c;
while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
while(c>='0'&&c<='9')num=num*10+c-48,c=getchar();
return num*flag;
}
int n;
int a[maxn],id[maxn],pos[maxn],cur;
int F[maxn];
int pri[maxn],phi[maxn],mu[maxn],np[maxn],pcnt;
int fir[maxn],nxt[maxn],to[maxn],cnt;
int sz[maxn],son[maxn],dpt[maxn],fa[maxn],tp[maxn];
vector<int>G[maxn];
int p[maxn],stk[maxn],top;
int sum[maxn],f[maxn],vis[maxn];
int ans;
int ksm(int num,int k)
{
int ret=1;
for(;k;k>>=1,num=1ll*num*num%MOD)if(k&1)ret=1ll*ret*num%MOD;
return ret;
}
void newnode(int u,int v)
{to[++cnt]=v,nxt[cnt]=fir[u],fir[u]=cnt;}
int upd(int x){return x<MOD?x:x-MOD;}
bool cmp(int x,int y){return pos[x]<pos[y];}
void init()
{
mu[1]=phi[1]=1;
for(int i=2;i<maxn;i++)
{
if(!np[i])pri[++pcnt]=i,phi[i]=i-1,mu[i]=MOD-1;
for(int j=1;j<=pcnt&&i*pri[j]<maxn;j++)
{
np[i*pri[j]]=1;
if(i%pri[j])phi[i*pri[j]]=phi[i]*(pri[j]-1),mu[i*pri[j]]=MOD-mu[i];
else{phi[i*pri[j]]=phi[i]*pri[j];break;}
}
}
}
void dfs1(int u)
{
sz[u]=1;pos[u]=++cur;
for(int i=fir[u];i;i=nxt[i])if(to[i]!=fa[u])
{
fa[to[i]]=u,dpt[to[i]]=dpt[u]+1;
dfs1(to[i]),sz[u]+=sz[to[i]];
if(sz[son[u]]<sz[to[i]])son[u]=to[i];
}
}
void dfs2(int u,int ac)
{
tp[u]=ac;if(son[u])dfs2(son[u],ac);
for(int i=fir[u];i;i=nxt[i])if(to[i]!=fa[u]&&to[i]!=son[u])dfs2(to[i],to[i]);
}
int LCA(int u,int v)
{
for(;tp[u]!=tp[v];u=fa[tp[u]])if(dpt[tp[u]]<dpt[tp[v]])swap(u,v);
return dpt[u]<dpt[v]?u:v;
}
void dp(int u)
{
sum[u]=vis[u]*phi[a[u]];
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
dp(v),f[u]=upd(f[u]+2ll*sum[u]*sum[v]%MOD),sum[u]=upd(sum[u]+sum[v]);
}
}
inline void solve(int x)
{
int tot=0;
for(int i=x;i<=n;i+=x)p[++tot]=id[i],vis[id[i]]=1;
sort(p+1,p+tot+1,cmp);
for(int i=tot-1;i;i--)p[++tot]=LCA(p[i],p[i+1]);
sort(p+1,p+tot+1,cmp);tot=unique(p+1,p+tot+1)-p-1;
stk[++top]=p[1];
for(int i=2;i<=tot;i++)
{
while(top&&pos[stk[top]]+sz[stk[top]]<=pos[p[i]])top--;
G[stk[top]].push_back(p[i]),stk[++top]=p[i];
}
top=0;
int tmp1=0,tmp2=0;
for(int i=1;i<=tot;i++)if(vis[p[i]])tmp2=upd(tmp2+phi[a[p[i]]]);
for(int i=1;i<=tot;i++)if(vis[p[i]])tmp1=upd(tmp1+1ll*phi[a[p[i]]]*dpt[p[i]]%MOD*tmp2%MOD);
dp(p[1]);tmp2=0;
for(int i=1;i<=tot;i++)tmp2=upd(tmp2+1ll*dpt[p[i]]*f[p[i]]%MOD);
for(int i=1;i<=tot;i++)if(vis[p[i]])tmp2=upd(tmp2+1ll*dpt[p[i]]*phi[a[p[i]]]%MOD*phi[a[p[i]]]%MOD);
F[x]=upd(upd(tmp1*2)-upd(tmp2*2)+MOD);
for(int i=1;i<=tot;i++)G[p[i]].clear(),f[p[i]]=sum[p[i]]=vis[p[i]]=0;
}
int main()
{
init();
n=getint();
for(int i=1;i<=n;i++)id[a[i]=getint()]=i;
for(int i=1;i<n;i++)
{
int u=getint(),v=getint();
newnode(u,v),newnode(v,u);
}
dfs1(1),dfs2(1,1);
for(int i=1;i<=n/2;i++)solve(i);
for(int i=1;i<=n;i++)for(int j=i;j<=n;j+=i)f[i]=upd(f[i]+1ll*F[j]*mu[j/i]%MOD);
for(int i=1;i<=n;i++)ans=upd(ans+1ll*ksm(phi[i],MOD-2)*i%MOD*f[i]%MOD);
printf("%lld
",1ll*ans*ksm(1ll*n*(n-1)%MOD,MOD-2)%MOD);
}