zoukankan      html  css  js  c++  java
  • MapReduce机制

    1. MapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题。
    2. MR由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce()两个函数,即可实现分布式计算,非常简单。
    这两个函数的形参是key、value对,表示函数的输入信息。

    MapReduce的原理图如图所示:

    整个处理过程的流程图:

    我们不妨通过一个简单的例子加以说明。

    这个例子是统计一堆域名中,每个域名各有多少个。如果放在单机上写程序,处理起来很容易,可以用个HashMap或者在数据库中distinct,但是一旦数据量足够大,单机无法满足的时候,就需要用到集群,即MapReduce进行运行。运行大概思路如下图所示,首先文件里面的内容被分成了若干块,放到了不同的map中,进行相应的统计处理,即变成<qq.com  1>这种形式,注意到这是可以分布运行的,不会影响到最终结果。框架在map处理完成之后,将所有kv对缓存起来,进行分组,然后传递一个组<key,valus{}>,相同的key为一组,相同的组放到一个reduce中进行运行。所以reduce收到的效果是类似<qq.com  {1,1,1,1...}>这种格式,然后reduce再进行一个简单的加和运算就可以了,最终输出类似<qq.com  50000>这种效果。

    ◆执行步骤:

    1. map任务处理

    1.1 读取输入文件内容,解析成key、value对。对输入文件的每一行,解析成key、value对。每一个键值对调用一次map函数。

    1.2 写自己的逻辑,对输入的key、value处理,转换成新的key、value输出。

    2.reduce任务处理

    2.1 在reduce之前,有一个shuffle的过程对多个map任务的输出进行合并、排序。

    2.2写reduce函数自己的逻辑,对输入的key、value处理,转换成新的key、value输出。

    2.3 把reduce的输出保存到文件中。

    任务切片的示意图:

    我们用代码进行说明,导入mapreduce所需要的相应包,建立三个文件:

    WCMapper.java文件:

    package cn.darrenchan.hadoop.mr.wordcount;
    
    import java.io.IOException;
    
    import org.apache.commons.lang.StringUtils;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    //4个泛型中,前两个是指定mapper输入数据的类型,KEYIN是输入的key的类型,VALUEIN是输入的value的类型
    //map 和 reduce 的数据输入输出都是以 key-value对的形式封装的
    //默认情况下,框架传递给我们的mapper的输入数据中,key是要处理的文本中一行的起始偏移量,这一行的内容作为value
    //下面这两种类型就相当于Long和String,是hadoop的类型
    public class WCMapper extends Mapper<LongWritable, Text, Text, LongWritable>{
        
        //mapreduce框架每读一行数据就调用一次该方法
        @Override
        protected void map(LongWritable key, Text value,Context context)
                throws IOException, InterruptedException {
            //具体业务逻辑就写在这个方法体中,而且我们业务要处理的数据已经被框架传递进来,在方法的参数中 key-value
            //key 是这一行数据的起始偏移量     value 是这一行的文本内容
            
            //将这一行的内容转换成string类型
            String line = value.toString();
            
            //对这一行的文本按特定分隔符切分
            String[] words = StringUtils.split(line, " ");
            
            //遍历这个单词数组输出为kv形式  k:单词   v : 1
            for(String word : words){
                context.write(new Text(word), new LongWritable(1));
            }
            
        }
        
    }

    WCReducer.java文件:

    package cn.darrenchan.hadoop.mr.wordcount;
    
    import java.io.IOException;
    
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;
    
    public class WCReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
    
        // 框架在map处理完成之后,将所有kv对缓存起来,进行分组,然后传递一个组<key,valus{}>,相同的key为一组,调用一次reduce方法
        // <hello,{1,1,1,1,1,1.....}>
        @Override
        protected void reduce(Text key, Iterable<LongWritable> values,
                Context context) throws IOException, InterruptedException {
    
            long count = 0;
            // 遍历value的list,进行累加求和
            for (LongWritable value : values) {
                count += value.get();
            }
    
            // 输出这一个单词的统计结果
            context.write(key, new LongWritable(count));
    
        }
    
    }

    WCRunner.java文件:

    package cn.darrenchan.hadoop.mr.wordcount;
    
    import java.io.IOException;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    /**
     * 用来描述一个特定的作业
     * 比如,该作业使用哪个类作为逻辑处理中的map,哪个作为reduce
     * 还可以指定该作业要处理的数据所在的路径
     * 还可以指定改作业输出的结果放到哪个路径
     * ....
     *
     */
    public class WCRunner {
    
        public static void main(String[] args) throws Exception {
            
            Configuration conf = new Configuration();
            
            Job wcjob = Job.getInstance(conf);
            
            //设置整个job所用的那些类在哪个jar包
            wcjob.setJarByClass(WCRunner.class);
            
            
            //本job使用的mapper和reducer的类
            wcjob.setMapperClass(WCMapper.class);
            wcjob.setReducerClass(WCReducer.class);
            
            
            //指定reduce的输出数据kv类型
            wcjob.setOutputKeyClass(Text.class);
            wcjob.setOutputValueClass(LongWritable.class);
            
            //指定mapper的输出数据kv类型
            wcjob.setMapOutputKeyClass(Text.class);
            wcjob.setMapOutputValueClass(LongWritable.class);
            
            
            //指定要处理的输入数据存放路径
            FileInputFormat.setInputPaths(wcjob, new Path("/wc/srcdata/"));
            
            //指定处理结果的输出数据存放路径
            FileOutputFormat.setOutputPath(wcjob, new Path("/wc/output/"));
            
            //将job提交给集群运行 ,将运行状态进行打印
            wcjob.waitForCompletion(true);
            
        }
        
        
        
        
    }

    我们可以以集群模式运行:

    将工程打成jar包,上传到服务器,然后用hadoop命令提交  hadoop jar wc.jar cn.darrenchan.hadoop.mr.wordcount.WCRunner即可。

    我们也可以以本地模式运行:

    在linux的eclipse里面直接运行main方法,但是不要添加yarn相关的配置,也会提交给localjobrunner执行
    ----输入输出数据可以放在本地路径下(/home/hadoop/wc/srcdata/)
    ----输入输出数据也可以放在hdfs中(hdfs://weekend110:9000/wc/srcdata)

    在运行过程中会打印运行状态,信息如下:

    17/02/24 06:21:29 INFO client.RMProxy: Connecting to ResourceManager at weekend110/192.168.230.134:8032
    17/02/24 06:21:30 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
    17/02/24 06:21:31 INFO input.FileInputFormat: Total input paths to process : 1
    17/02/24 06:21:32 INFO mapreduce.JobSubmitter: number of splits:1
    17/02/24 06:21:35 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1487945579635_0001
    17/02/24 06:21:36 INFO impl.YarnClientImpl: Submitted application application_1487945579635_0001
    17/02/24 06:21:37 INFO mapreduce.Job: The url to track the job: http://weekend110:8088/proxy/application_1487945579635_0001/
    17/02/24 06:21:37 INFO mapreduce.Job: Running job: job_1487945579635_0001
    17/02/24 06:21:48 INFO mapreduce.Job: Job job_1487945579635_0001 running in uber mode : false
    17/02/24 06:21:48 INFO mapreduce.Job: map 0% reduce 0%
    17/02/24 06:21:54 INFO mapreduce.Job: map 100% reduce 0%
    17/02/24 06:21:59 INFO mapreduce.Job: map 100% reduce 100%
    17/02/24 06:21:59 INFO mapreduce.Job: Job job_1487945579635_0001 completed successfully
    17/02/24 06:21:59 INFO mapreduce.Job: Counters: 49
    File System Counters
    FILE: Number of bytes read=297
    FILE: Number of bytes written=186437
    FILE: Number of read operations=0
    FILE: Number of large read operations=0
    FILE: Number of write operations=0
    HDFS: Number of bytes read=208
    HDFS: Number of bytes written=87
    HDFS: Number of read operations=6
    HDFS: Number of large read operations=0
    HDFS: Number of write operations=2
    Job Counters
    Launched map tasks=1
    Launched reduce tasks=1
    Data-local map tasks=1
    Total time spent by all maps in occupied slots (ms)=3753
    Total time spent by all reduces in occupied slots (ms)=3019
    Total time spent by all map tasks (ms)=3753
    Total time spent by all reduce tasks (ms)=3019
    Total vcore-seconds taken by all map tasks=3753
    Total vcore-seconds taken by all reduce tasks=3019
    Total megabyte-seconds taken by all map tasks=3843072
    Total megabyte-seconds taken by all reduce tasks=3091456
    Map-Reduce Framework
    Map input records=8
    Map output records=19
    Map output bytes=253
    Map output materialized bytes=297
    Input split bytes=107
    Combine input records=0
    Combine output records=0
    Reduce input groups=12
    Reduce shuffle bytes=297
    Reduce input records=19
    Reduce output records=12
    Spilled Records=38
    Shuffled Maps =1
    Failed Shuffles=0
    Merged Map outputs=1
    GC time elapsed (ms)=164
    CPU time spent (ms)=1460
    Physical memory (bytes) snapshot=218402816
    Virtual memory (bytes) snapshot=726446080
    Total committed heap usage (bytes)=137433088
    Shuffle Errors
    BAD_ID=0
    CONNECTION=0
    IO_ERROR=0
    WRONG_LENGTH=0
    WRONG_MAP=0
    WRONG_REDUCE=0
    File Input Format Counters
    Bytes Read=101
    File Output Format Counters
    Bytes Written=87

    最终会生成如下两个文件:

    源文件是:

    hello chenchi
    hello jim
    hello jack
    hello darren
    hello baby
    hello dd
    baby is my god
    hahaha is rubbish

    在part-r-0000中会显示相应结果:

    baby 2
    chenchi 1
    darren 1
    dd 1
    god 1
    hahaha 1
    hello 6
    is 2
    jack 1
    jim 1
    my 1
    rubbish 1

     

    附:统计文本中记录条数的代码:

    package com.darrenchan.hadoop;
    
    import java.io.IOException;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.NullWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    public class Count {
        public static class CountMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
    
            @Override
            protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
                // 封装数据为kv并输出
                context.write(new Text("count"), new LongWritable(1));
            }
    
        }
    
        public static class CountReducer extends Reducer<Text, LongWritable, NullWritable, LongWritable> {
            @Override
            protected void reduce(Text key, Iterable<LongWritable> values,
                    Reducer<Text, LongWritable, NullWritable, LongWritable>.Context context)
                    throws IOException, InterruptedException {
                long sum = 0;
    
                for (LongWritable value : values) {
                    sum += value.get();
                }
                context.write(NullWritable.get(), new LongWritable(sum));
            }
        }
    
        public static void main(String[] args) throws Exception {
    
            Configuration conf = new Configuration();
            Job job = Job.getInstance(conf);
    
            job.setJarByClass(Count.class);
    
            job.setMapperClass(CountMapper.class);
            job.setReducerClass(CountReducer.class);
    
            
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(LongWritable.class);
            
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(LongWritable.class);
    
            FileInputFormat.setInputPaths(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
    
            System.exit(job.waitForCompletion(true) ? 0 : 1);
    
        }
    
    }
  • 相关阅读:
    This is a thoughtful essay
    MSSQL 模糊搜索全文(过程、函数、触发器等)
    MSSQL 高并发下生成连续不重复的订单号
    MSSQL sql numeric转字符串显示不补0
    iOS 开发之UIStackView的应用
    Java day 5
    Java day 4
    Java day 3-1
    Java day 3
    Java day 2
  • 原文地址:https://www.cnblogs.com/DarrenChan/p/6440756.html
Copyright © 2011-2022 走看看