zoukankan      html  css  js  c++  java
  • Hadoop项目实战

    这个项目是流量经营项目,通过Hadoop的离线数据项目。

    运营商通过HTTP日志,分析用户的上网行为数据,进行行为轨迹的增强。

     

    HTTP数据格式为:

    流程:

    系统架构:

    技术选型:

    这里只针对其中的一个功能进行说明:

    其中规则库是人工填充的,实例库是采用机器学习自动生成的,形式都是<url,info>。

    (一)统计流量排名前80%的URL,只有少数的URL流量比特别高,绝大多数的URL流量极低,没有参考价值,应当舍弃。

    FlowBean.java:

    package cn.itcast.hadoop.mr.flowsum;
    
    import java.io.DataInput;
    import java.io.DataOutput;
    import java.io.IOException;
    
    import org.apache.hadoop.io.Writable;
    import org.apache.hadoop.io.WritableComparable;
    
    public class FlowBean implements WritableComparable<FlowBean>{
        
        
        private String phoneNB;
        private long up_flow;
        private long d_flow;
        private long s_flow;
        
        //在反序列化时,反射机制需要调用空参构造函数,所以显示定义了一个空参构造函数
        public FlowBean(){}
        
        //为了对象数据的初始化方便,加入一个带参的构造函数
        public FlowBean(String phoneNB, long up_flow, long d_flow) {
            this.phoneNB = phoneNB;
            this.up_flow = up_flow;
            this.d_flow = d_flow;
            this.s_flow = up_flow + d_flow;
        }
    
        public void set(String phoneNB, long up_flow, long d_flow) {
            this.phoneNB = phoneNB;
            this.up_flow = up_flow;
            this.d_flow = d_flow;
            this.s_flow = up_flow + d_flow;
        }
        
        
        
        public String getPhoneNB() {
            return phoneNB;
        }
    
        public void setPhoneNB(String phoneNB) {
            this.phoneNB = phoneNB;
        }
    
        public long getUp_flow() {
            return up_flow;
        }
    
        public void setUp_flow(long up_flow) {
            this.up_flow = up_flow;
        }
    
        public long getD_flow() {
            return d_flow;
        }
    
        public void setD_flow(long d_flow) {
            this.d_flow = d_flow;
        }
    
        public long getS_flow() {
            return s_flow;
        }
    
        public void setS_flow(long s_flow) {
            this.s_flow = s_flow;
        }
    
        
        
        //将对象数据序列化到流中
        @Override
        public void write(DataOutput out) throws IOException {
    
            out.writeUTF(phoneNB);
            out.writeLong(up_flow);
            out.writeLong(d_flow);
            out.writeLong(s_flow);
            
        }
    
        
        //从数据流中反序列出对象的数据
        //从数据流中读出对象字段时,必须跟序列化时的顺序保持一致
        @Override
        public void readFields(DataInput in) throws IOException {
    
            phoneNB = in.readUTF();
            up_flow = in.readLong();
            d_flow = in.readLong();
            s_flow = in.readLong();
            
        }
        
        
        @Override
        public String toString() {
    
            return "" + up_flow + "	" +d_flow + "	" + s_flow;
        }
    
        @Override
        public int compareTo(FlowBean o) {
            return s_flow>o.getS_flow()?-1:1;
        }
        
    
    }

    TopkURLMapper.java:

    package cn.itcast.hadoop.mr.llyy.topkurl;
    
    import java.io.IOException;
    
    import org.apache.commons.lang.StringUtils;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    import cn.itcast.hadoop.mr.flowsum.FlowBean;
    
    public class TopkURLMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
    
        private FlowBean bean = new FlowBean();
        private Text k = new Text();
    
        @Override
        protected void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
    
            String line = value.toString();
    
            String[] fields = StringUtils.split(line, "	");
            try {
                if (fields.length > 32 && StringUtils.isNotEmpty(fields[26])
                        && fields[26].startsWith("http")) {
                    String url = fields[26];
    
                    long up_flow = Long.parseLong(fields[30]);
                    long d_flow = Long.parseLong(fields[31]);
    
                    k.set(url);
                    bean.set("", up_flow, d_flow);
    
                    context.write(k, bean);
                }
            } catch (Exception e) {
    
                System.out.println();
    
            }
        }
    
    }

    TopkURLReducer.java:

    package cn.itcast.hadoop.mr.llyy.topkurl;
    
    import java.io.IOException;
    import java.util.Map.Entry;
    import java.util.Set;
    import java.util.TreeMap;
    
    import org.apache.hadoop.hdfs.server.namenode.HostFileManager.EntrySet;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;
    
    import cn.itcast.hadoop.mr.flowsum.FlowBean;
    
    public class TopkURLReducer extends Reducer<Text, FlowBean, Text, LongWritable>{
        private TreeMap<FlowBean,Text> treeMap = new TreeMap<>();
        private double globalCount = 0;
        
        
        // <url,{bean,bean,bean,.......}>
        @Override
        protected void reduce(Text key, Iterable<FlowBean> values,Context context)
                throws IOException, InterruptedException {
            Text url = new Text(key.toString());
            long up_sum = 0;
            long d_sum = 0;
            for(FlowBean bean : values){
                
                up_sum += bean.getUp_flow();
                d_sum += bean.getD_flow();
            }
            
            FlowBean bean = new FlowBean("", up_sum, d_sum);
            //每求得一条url的总流量,就累加到全局流量计数器中,等所有的记录处理完成后,globalCount中的值就是全局的流量总和
            globalCount += bean.getS_flow();
            treeMap.put(bean,url);
    
        }
        
        
        //cleanup方法是在reduer任务即将退出时被调用一次
        @Override
        protected void cleanup(Context context)
                throws IOException, InterruptedException {
    
            Set<Entry<FlowBean, Text>> entrySet = treeMap.entrySet();
            double tempCount = 0;
            
            for(Entry<FlowBean, Text> ent: entrySet){
                
                if(tempCount / globalCount < 0.8){
                    
                    context.write(ent.getValue(), new LongWritable(ent.getKey().getS_flow()));
                    tempCount += ent.getKey().getS_flow();
                    
                }else{
                    return;
                }
                
                
            }
            
            
            
        }
        
    }

    TopkURLRunner.java:

    package cn.itcast.hadoop.mr.llyy.topkurl;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.conf.Configured;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.Tool;
    import org.apache.hadoop.util.ToolRunner;
    
    import cn.itcast.hadoop.mr.flowsum.FlowBean;
    
    public class TopkURLRunner extends Configured implements Tool{
    
        @Override
        public int run(String[] args) throws Exception {
    
            Configuration conf = new Configuration();
            Job job = Job.getInstance(conf);
            
            job.setJarByClass(TopkURLRunner.class);
            
            job.setMapperClass(TopkURLMapper.class);
            job.setReducerClass(TopkURLReducer.class);
            
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(FlowBean.class);
            
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(LongWritable.class);
            
            FileInputFormat.setInputPaths(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
            
            return job.waitForCompletion(true)?0:1;
        }
    
        public static void main(String[] args) throws Exception {
            int res = ToolRunner.run(new Configuration(), new TopkURLRunner(), args);
            System.exit(res);
            
        }
        
    }

    (二)将统计的URL导入到数据库中,这是URL规则库,一共就两个字段,URL和info说明,info是人工来实现,贴上标签。

    将上面的运行结果通过sqoop导入到数据库中,然后通过数据库读取再跑mapreduce程序。

    DBLoader.java:数据库的工具类。

    package cn.itcast.hadoop.mr.llyy.enhance;
    import java.sql.Connection;
    import java.sql.DriverManager;
    import java.sql.ResultSet;
    import java.sql.Statement;
    import java.util.HashMap;
    
    public class DBLoader {
    
        public static void dbLoader(HashMap<String, String> ruleMap) {
    
            Connection conn = null;
            Statement st = null;
            ResultSet res = null;
            
            try {
                Class.forName("com.mysql.jdbc.Driver");
                conn = DriverManager.getConnection("jdbc:mysql://weekend01:3306/urlcontentanalyse", "root", "root");
                st = conn.createStatement();
                res = st.executeQuery("select url,info from urlrule");
                while (res.next()) {
                    ruleMap.put(res.getString(1), res.getString(2));
                }
    
            } catch (Exception e) {
                e.printStackTrace();
                
            } finally {
                try{
                    if(res!=null){
                        res.close();
                    }
                    if(st!=null){
                        st.close();
                    }
                    if(conn!=null){
                        conn.close();
                    }
    
                }catch(Exception e){
                    e.printStackTrace();
                }
            }
    
        }
        
        
        public static void main(String[] args) {
            DBLoader db = new DBLoader();
            HashMap<String, String> map = new HashMap<String,String>();
            db.dbLoader(map);
            System.out.println(map.size());
        }
    
    }

    LogEnhanceOutputFormat.java:默认是TextOutputFormat,这里我需要实现将不同的结果输到不同的文件中,而不是_SUCCESS中,所以我需要重写一个format。

    package cn.itcast.hadoop.mr.llyy.enhance;
    
    import java.io.IOException;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.FSDataOutputStream;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.mapreduce.RecordWriter;
    import org.apache.hadoop.mapreduce.TaskAttemptContext;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    public class LogEnhanceOutputFormat<K, V> extends FileOutputFormat<K, V> {
    
        @Override
        public RecordWriter<K, V> getRecordWriter(TaskAttemptContext job)
                throws IOException, InterruptedException {
            
            FileSystem fs = FileSystem.get(new Configuration());
            FSDataOutputStream enhancedOs = fs.create(new Path("/liuliang/output/enhancedLog"));
            FSDataOutputStream tocrawlOs = fs.create(new Path("/liuliang/output/tocrawl"));
            
            return new LogEnhanceRecordWriter<K, V>(enhancedOs,tocrawlOs);
        }
    
        
        public static class LogEnhanceRecordWriter<K, V> extends RecordWriter<K, V>{
            private FSDataOutputStream enhancedOs =null;
            private FSDataOutputStream tocrawlOs =null;
    
            public LogEnhanceRecordWriter(FSDataOutputStream enhancedOs,FSDataOutputStream tocrawlOs){
                
                this.enhancedOs = enhancedOs;
                this.tocrawlOs = tocrawlOs;
                
            }
            
            
            @Override
            public void write(K key, V value) throws IOException,
                    InterruptedException {
    
                if(key.toString().contains("tocrawl")){
                    tocrawlOs.write(key.toString().getBytes());
                }else{
                    enhancedOs.write(key.toString().getBytes());
                }
                
                
            }
    
            @Override
            public void close(TaskAttemptContext context) throws IOException,
                    InterruptedException {
    
                if(enhancedOs != null){
                    enhancedOs.close();
                }
                if(tocrawlOs != null){
                    tocrawlOs.close();
                }
            
                
                
            }
            
            
            
        }
        
        
    }

    然后再从所有原始日志中抽取URL,查询规则库,如果由info标签,则追加在原始日志后面。否则,这个URL就是带爬取URL,后面追加tocrawl,这两种不同情况要输出到不同文件中。

    LogEnhanceMapper.java:

    package cn.itcast.hadoop.mr.llyy.enhance;
    
    import java.io.IOException;
    import java.util.HashMap;
    
    import org.apache.commons.lang.StringUtils;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.NullWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    /**
     * 
     * 
     * 读入原始日志数据,抽取其中的url,查询规则库,获得该url指向的网页内容的分析结果,追加到原始日志后
     * 
     * @author duanhaitao@itcast.cn
     * 
     */
    
    // 读入原始数据 (47个字段) 时间戳 ..... destip srcip ... url .. . get 200 ...
    // 抽取其中的url查询规则库得到众多的内容识别信息 网站类别,频道类别,主题词,关键词,影片名,主演,导演。。。。
    // 将分析结果追加到原始日志后面
    // context.write( 时间戳 ..... destip srcip ... url .. . get 200 ...
    // 网站类别,频道类别,主题词,关键词,影片名,主演,导演。。。。)
    // 如果某条url在规则库中查不到结果,则输出到带爬清单
    // context.write( url tocrawl)
    public class LogEnhanceMapper extends
            Mapper<LongWritable, Text, Text, NullWritable> {
    
        private HashMap<String, String> ruleMap = new HashMap<>();
    
        // setup方法是在mapper task 初始化时被调用一次
        @Override
        protected void setup(Context context) throws IOException,
                InterruptedException {
            DBLoader.dbLoader(ruleMap);
        }
    
        @Override
        protected void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
    
            String line = value.toString();
    
            String[] fields = StringUtils.split(line, "	");
            try {
                if (fields.length > 27 && StringUtils.isNotEmpty(fields[26])
                        && fields[26].startsWith("http")) {
                    String url = fields[26];
                    String info = ruleMap.get(url);
                    String result = "";
                    if (info != null) {
                        result = line + "	" + info + "
    
    ";
                        context.write(new Text(result), NullWritable.get());
                    } else {
                        result = url + "	" + "tocrawl" + "
    
    ";
                        context.write(new Text(result), NullWritable.get());
                    }
    
                } else {
                    return;
                }
            } catch (Exception e) {
                System.out.println("exception occured in mapper.....");
            }
        }
    
    }

    LogEnhanceRunner.java:

    package cn.itcast.hadoop.mr.llyy.enhance;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.conf.Configured;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.NullWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.Tool;
    import org.apache.hadoop.util.ToolRunner;
    
    public class LogEnhanceRunner extends Configured implements Tool{
    
        @Override
        public int run(String[] args) throws Exception {
    
            Configuration conf = new Configuration();
            
            Job job = Job.getInstance(conf);
            
            job.setJarByClass(LogEnhanceRunner.class);
            
            job.setMapperClass(LogEnhanceMapper.class);
            
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(NullWritable.class);
            
            job.setOutputFormatClass(LogEnhanceOutputFormat.class);
            
            FileInputFormat.setInputPaths(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
            
            return job.waitForCompletion(true)?0:1;
        }
    
        public static void main(String[] args) throws Exception {
            int res = ToolRunner.run(new Configuration(), new LogEnhanceRunner(),args);
            System.exit(res);
        }
        
        
    }

    这里不写reduce也行。

    MapReduce实现Top K问题:https://blog.csdn.net/u011750989/article/details/11482805?locationNum=5

  • 相关阅读:
    【实战】如何实现滚轮时间的显示
    NSDate的常用用法
    UIDatePicker的简单用法
    NSDateFormatter相关整理
    UIPickerView
    回家任务
    addTarget:self 的意思是说,这个方法在本类中
    2020/2/25
    树上启发式合并
    题解
  • 原文地址:https://www.cnblogs.com/DarrenChan/p/6640983.html
Copyright © 2011-2022 走看看