zoukankan      html  css  js  c++  java
  • MapReduce实战(五)实现关联查询

    需求:

    利用MapReduce程序,实现SQL语句中的join关联查询。

    订单数据表order:

    id date pid amount
    1001 20150710 P0001 2
    1002 20150710 P0001 3
    1002 20150710 P0002 3
    1003 20150710 P0003 4

    商品信息表product:

    pid pname category_id price
    P0001 小米6 1000 2499
    P0002 锤子T3 1001 2500
    P0003 三星S8 1002 6999

    假如数据量巨大,两表的数据是以文件的形式存储在HDFS中,需要用mapreduce程序来实现一下SQL查询运算:

    select  a.id,a.date,b.name,b.category_id,b.price from t_order a join t_product b on a.pid = b.id

    分析:

    通过将关联的条件作为map输出的key,将两表满足join条件的数据并携带数据所来源的文件信息,发往同一个reduce task,在reduce中进行数据的串联。

    实现:

    首先,我们将表中的数据转换成我们需要的格式:

    order.txt:

    1001,20150710,P0001,2
    1002,20150710,P0001,3
    1002,20150710,P0002,3
    1003,20150710,P0003,4

    product.txt:

    P0001,小米6,1000,2499
    P0002,锤子T3,1001,2500
    P0003,三星S8,1002,6999

    并且导入到HDFS的/join/srcdata目录下面。

    因为我们有两种格式的文件,所以在map阶段需要根据文件名进行一下判断,不同的文案进行不同的处理。同理,在reduce阶段我们也要针对同一key(pid)的不同种类数据进行判断,是通过判断id是否为空字符串进行判断的。

    InfoBean.java:

    package com.darrenchan.mr.bean;
    
    import java.io.DataInput;
    import java.io.DataOutput;
    import java.io.IOException;
    
    import org.apache.hadoop.io.Writable;
    
    /**
     * id date pid amount pname category_id price
     * 
     * @author chenchi
     *
     */
    public class InfoBean implements Writable {
        private String id;// 订单id
        private String date;
        private String pid;// 产品id
        private String amount;
        private String pname;
        private String category_id;
        private String price;
    
        public InfoBean() {
    
        }
    
        public InfoBean(String id, String date, String pid, String amount, String pname, String category_id, String price) {
            super();
            this.id = id;
            this.date = date;
            this.pid = pid;
            this.amount = amount;
            this.pname = pname;
            this.category_id = category_id;
            this.price = price;
        }
    
        public String getId() {
            return id;
        }
    
        public void setId(String id) {
            this.id = id;
        }
    
        public String getDate() {
            return date;
        }
    
        public void setDate(String date) {
            this.date = date;
        }
    
        public String getPid() {
            return pid;
        }
    
        public void setPid(String pid) {
            this.pid = pid;
        }
    
        public String getAmount() {
            return amount;
        }
    
        public void setAmount(String amount) {
            this.amount = amount;
        }
    
        public String getPname() {
            return pname;
        }
    
        public void setPname(String pname) {
            this.pname = pname;
        }
    
        public String getCategory_id() {
            return category_id;
        }
    
        public void setCategory_id(String category_id) {
            this.category_id = category_id;
        }
    
        public String getPrice() {
            return price;
        }
    
        public void setPrice(String price) {
            this.price = price;
        }
    
        @Override
        public String toString() {
            return "InfoBean [id=" + id + ", date=" + date + ", pid=" + pid + ", amount=" + amount + ", pname=" + pname
                    + ", category_id=" + category_id + ", price=" + price + "]";
        }
    
        /**
         * id date pid amount pname category_id price
         */
        @Override
        public void readFields(DataInput in) throws IOException {
            id = in.readUTF();
            date = in.readUTF();
            pid = in.readUTF();
            amount = in.readUTF();
            pname = in.readUTF();
            category_id = in.readUTF();
            price = in.readUTF();
        }
    
        @Override
        public void write(DataOutput out) throws IOException {
            out.writeUTF(id);
            out.writeUTF(date);
            out.writeUTF(pid);
            out.writeUTF(amount);
            out.writeUTF(pname);
            out.writeUTF(category_id);
            out.writeUTF(price);
        }
    
    }

    Join.java:

    package com.darrenchan.mr.join;
    
    import java.io.IOException;
    import java.lang.reflect.InvocationTargetException;
    import java.util.ArrayList;
    import java.util.List;
    
    import org.apache.commons.beanutils.BeanUtils;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.NullWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.input.FileSplit;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    import com.darrenchan.mr.bean.InfoBean;
    
    public class Join {
        /**
         * Mapper类
         * @author chenchi
         *
         */
        public static class JoinMapper extends Mapper<LongWritable, Text, Text, InfoBean>{
            //提前在这里new一个对象,剩下的就是改变它的值,不至于在map方法中创建出大量的InfoBean对象
            InfoBean infoBean = new InfoBean();
            Text text = new Text();//理由同上
            @Override
            protected void map(LongWritable key, Text value, Context context)
                    throws IOException, InterruptedException {
                //首先,要判断文件名称,读的是订单数据还是商品数据
                FileSplit inputSplit = (FileSplit) context.getInputSplit();
                String name = inputSplit.getPath().getName();//文件名称
                if(name.startsWith("order")){//来自订单数据
                    String line = value.toString();
                    String[] fields = line.split(",");
                    String id = fields[0];
                    String date = fields[1];
                    String pid = fields[2];
                    String amount = fields[3];
                    
                    infoBean.setId(id);
                    infoBean.setDate(date);
                    infoBean.setPid(pid);
                    infoBean.setAmount(amount);
                    //对于订单数据来说,后面三个属性都置为""
                    //之所以不置为null,是因为其要进行序列化和反序列化
                    infoBean.setPname("");
                    infoBean.setCategory_id("");
                    infoBean.setPrice("");
                    
                    text.set(pid);
                    context.write(text, infoBean);
                }else{//来自商品数据
                    String line = value.toString();
                    String[] fields = line.split(",");
                    String pid = fields[0];
                    String pname = fields[1];
                    String category_id = fields[2];
                    String price = fields[3];
                    
                    infoBean.setPname(pname);
                    infoBean.setCategory_id(category_id);
                    infoBean.setPrice(price);
                    infoBean.setPid(pid);
                    //对于订单数据来说,后面三个属性都置为""
                    //之所以不置为null,是因为其要进行序列化和反序列化
                    infoBean.setId("");
                    infoBean.setDate("");
                    infoBean.setAmount("");
                    
                    text.set(pid);
                    context.write(text, infoBean);
                }
            }
        }
        
        
        public static class JoinReducer extends Reducer<Text, InfoBean, InfoBean, NullWritable>{
            //订单数据中一个pid会有多条数据
            //商品数据中一个pid只有一条
            
            @Override
            protected void reduce(Text key, Iterable<InfoBean> values, Context context) throws IOException, InterruptedException {
                List<InfoBean> list = new ArrayList<InfoBean>();//存储订单数据中的多条
                InfoBean info = new InfoBean();//存储商品数据中的一条
                for (InfoBean infoBean : values) {
                    if(!"".equals(infoBean.getId())){//来自订单数据
                        InfoBean infoBean2 = new InfoBean();
                        try {
                            BeanUtils.copyProperties(infoBean2, infoBean);
                        } catch (Exception e) {
                            e.printStackTrace();
                        }
                        list.add(infoBean2);
                    }else{//来自商品数据
                        try {
                            BeanUtils.copyProperties(info, infoBean);
                        } catch (IllegalAccessException | InvocationTargetException e) {
                            e.printStackTrace();
                        }
                    }
                }
                for (InfoBean infoBean : list) {
                    infoBean.setPname(info.getPname());
                    infoBean.setCategory_id(info.getCategory_id());
                    infoBean.setPrice(info.getPrice());
                    
                    context.write(infoBean, NullWritable.get());
                }
            }
        }
        
        
        
        public static void main(String[] args) throws Exception {
            Configuration conf = new Configuration();
            Job job = Job.getInstance(conf);
            
            job.setJarByClass(Join.class);
            
            job.setMapperClass(JoinMapper.class);
            job.setReducerClass(JoinReducer.class);
            
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(InfoBean.class);
            
            job.setOutputKeyClass(InfoBean.class);
            job.setOutputValueClass(NullWritable.class);
            
            FileInputFormat.setInputPaths(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
    
            System.exit(job.waitForCompletion(true) ? 0 : 1);
        }
        
        
    }

    注:这里有一个地方需要注意,就是reduce方法的Iterable<InfoBean> values,一定要new 新对象,不能直接赋值,因为迭代器的内容在不断变化。

    执行指令:hadoop jar mywc.jar cn.darrenchan.hadoop.mr.wordcount.WCRunner /wc/src /wc/output

    运行效果:

    但是呢?这种方式是有缺陷的,什么缺陷呢?

    这种方式中,join的操作是在reduce阶段完成,reduce端的处理压力太大,map节点的运算负载则很低,资源利用率不高,且在reduce阶段极易产生数据倾斜。什么叫数据倾斜呢?比如在中国买小米6的人特别多,三星S8的人特别少,汇总的时候,当汇总小米6的pid的时候就运算压力特别大,而S8的pid的时候运算压力就特别小,显然负载不均衡。

    那么我们应该用什么方法进行解决呢?就是map端join实现方式了。

    我们将业务操作移到了map端,reduce甚至可以不用了,因为商品表一般内容不多,所以我们可以提前加载到内存中,运行map方法的时候直接查找即可,利用了MapReduce的分布式缓存。

    代码如下:

    package com.darrenchan.mr.mapedjoin;
    
    import java.io.BufferedReader;
    import java.io.File;
    import java.io.FileInputStream;
    import java.io.IOException;
    import java.io.InputStreamReader;
    import java.net.URI;
    import java.net.URISyntaxException;
    import java.util.HashMap;
    import java.util.Map;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.NullWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.input.FileSplit;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    import com.darrenchan.mr.bean.InfoBean;
    
    public class MapedJoin {
    
        public static class MapedJoinMapper extends Mapper<LongWritable, Text, InfoBean, NullWritable> {
    
            // 用一个map来存储商品信息表
            private Map<String, String> map = new HashMap<>();
            //提前在这里new一个对象,剩下的就是改变它的值,不至于在map方法中创建出大量的InfoBean对象
            InfoBean infoBean = new InfoBean();
    
            @Override
            protected void setup(Context context) throws IOException, InterruptedException {
                // 因为已经加载到本地目录了,所以可以本地读取
                FileInputStream inputStream = new FileInputStream(new File("product.txt"));
                InputStreamReader isr = new InputStreamReader(inputStream);
                BufferedReader br = new BufferedReader(isr);
                String line = null;
    
                while ((line = br.readLine()) != null) {
                    String[] fields = line.split(",");
                    map.put(fields[0], line);
                }
    
                br.close();
            }
    
            @Override
            protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
                // 判断文件类型,就不用读取商品数据了
                FileSplit inputSplit = (FileSplit) context.getInputSplit();
                String name = inputSplit.getPath().getName();
                if (name.startsWith("order")) {
                    String line = value.toString();
                    String[] fields = line.split(",");
                    String id = fields[0];
                    String date = fields[1];
                    String pid = fields[2];
                    String amount = fields[3];
                    
                    infoBean.setId(id);
                    infoBean.setDate(date);
                    infoBean.setPid(pid);
                    infoBean.setAmount(amount);
                    
                    String product = map.get(pid);
                    String[] splits = product.split(",");
                    String pname = splits[1];
                    String category_id = splits[2];
                    String price = splits[3];
                    
                    infoBean.setPname(pname);
                    infoBean.setCategory_id(category_id);
                    infoBean.setPrice(price);
                    
                    context.write(infoBean, NullWritable.get());
                }
            }
        }
    
        public static void main(String[] args) throws Exception {
            Configuration conf = new Configuration();
            Job job = Job.getInstance(conf);
    
            job.setJarByClass(MapedJoin.class);
    
            job.setMapperClass(MapedJoinMapper.class);
    
            job.setMapOutputKeyClass(InfoBean.class);
            job.setMapOutputValueClass(NullWritable.class);
    
            // map端join的逻辑不需要reduce阶段,设置reducetask数量为0
            // 因为即便不写reduce,它也默认启动一个reduce
            job.setNumReduceTasks(0);
    
            // 指定需要缓存一个文件到所有的maptask运行节点工作目录
            /* job.addArchiveToClassPath(archive); */// 缓存jar包到task运行节点的classpath中
            /* job.addFileToClassPath(file); */// 缓存普通文件到task运行节点的classpath中
            /* job.addCacheArchive(uri); */// 缓存压缩包文件到task运行节点的工作目录
            /* job.addCacheFile(uri) */// 缓存普通文件到task运行节点的工作目录
    
            // 将产品表文件缓存到task工作节点的工作目录中去
            // 就可以直接本地读取了
            job.addCacheFile(new URI("/join/srcdata/product.txt"));
    
            FileInputFormat.setInputPaths(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
    
            boolean b = job.waitForCompletion(true);
            System.exit(b ? 0 : 1);
        }
    }

    结果同上。

  • 相关阅读:
    在Twrp下删除面具模块
    Windows之批量创建用户、组部署
    H3C之HDLC实验部署
    Linux之防火墙部署
    H3C之Telnet实验部署
    win10 远程桌面 ubuntu
    VMware 虚拟机开机黑屏
    计算机存储单位换算
    TextCNN代码实践
    TextCNN论文解读
  • 原文地址:https://www.cnblogs.com/DarrenChan/p/6754223.html
Copyright © 2011-2022 走看看