zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 50

    1036A - Function Height    20180907

    (ans=left lceil frac{k}{n} ight ceil)

    #include<bits/stdc++.h>
    using namespace std;
    #define LL long long
    LL n,k;
    int main()
    {
        scanf("%I64d%I64d",&n,&k);
        printf("%I64d
    ",(k-1)/n+1);
        return 0;
    }
    View Code

    1036B - Diagonal Walking v.2    20180907

    简单分类讨论即可

    #include<bits/stdc++.h>
    using namespace std;
    #define N 10001
    #define LL long long
    LL q,n,m,k;
    int main()
    {
        scanf("%I64d",&q);
        while(q--)
          {
          scanf("%I64d%I64d%I64d",&n,&m,&k);
          if(max(n,m)>k){printf("-1
    ");continue;}
          printf("%I64d
    ",n+m&1?k-1:(k+m&1?k-2:k));
          }
    }
    View Code

    1036C - Classy Numbers    20180907

    暴力预处理出所有满足条件的数,排序后去重即可

    #include<bits/stdc++.h>
    using namespace std;
    #define LL long long
    LL T,l,r,cnt,p[18],f[19260817];
    int main()
    {
        p[0]=1,f[++cnt]=1000000000000000000ll;
        for(LL i=1;i<18;i++)p[i]=p[i-1]*10ll;
        for(LL i=1;i<=999;i++)
          {
          LL x=i/100,y=(i/10)%10,z=i%10;
          for(LL a=0;a<18;a++)
          for(LL b=0;b<18;b++)if(b!=a)
          for(LL c=0;c<18;c++)if(c!=b && c!=a)
            f[++cnt]=x*p[a]+y*p[b]+z*p[c];
          }
        sort(f+1,f+cnt+1);
        cnt=unique(f+1,f+cnt+1)-f-1; 
        scanf("%I64d",&T);
        while(T--)
          {
          scanf("%I64d%I64d",&l,&r);
          printf("%I64d
    ",(LL)(upper_bound(f+1,f+cnt+1,r)-lower_bound(f+1,f+cnt+1,l)));
          }
    }
    View Code

    1036D - Vasya and Arrays    20180907

    预处理两个数组的前缀和,当且仅当(a_n=b_m)时有解,答案就是(a_i=b_j)的方案数

    #include<bits/stdc++.h>
    using namespace std;
    #define N 300005
    #define LL long long
    LL n,m,a[N],b[N],ans;
    int main()
    {
        scanf("%I64d",&n);
        for(LL i=1;i<=n;i++)
          scanf("%I64d",&a[i]),a[i]+=a[i-1];
        scanf("%I64d",&m);
        for(LL i=1;i<=m;i++)
          scanf("%I64d",&b[i]),b[i]+=b[i-1];
        if(a[n]!=b[m])return printf("-1
    "),0;
        LL i=1,j=1;
        while(i<=n && j<=m)
          {
          while(a[i]<b[j] && i<=n)i++;
          while(b[j]<a[i] && j<=m)j++;
          if(i<=n && j<=m && a[i]==b[j])
            i++,ans++;
          }
        printf("%I64d
    ",ans);
        return 0;
    }
    View Code

    1036E - Covered Points    20180907

    首先,若设一个线段对应的向量是(x,y),则这个线段上的整点数量为gcd(x,y)+1,之后考虑把相交的整点部分去除就好了

    注意判断交点是否为整点时,不建议直接强转成整型,否则可能会有精度损失(比如可能会将2记录为1.99999999,强制转换后会变为1)

    前方超长代码预警,学长的模板真是太好用了xD

    #include<bits/stdc++.h>
    using namespace std;
    typedef long double lod;
    typedef long long ll;
    typedef long double ld;
    const ld eps=1e-8;
    const ld pi=acos(-1.0);
    int sgn(ld x)
    {
        if (x<-eps) return -1;
        if (x>eps) return 1;
        return 0;
    }
     
    struct P; //点,向量
    struct LINE; //线段,射线,直线;
    struct CIRCLE;
    struct TRIANGLE;
    struct POLYGON;
     
    void kr(ld &x)
    {
        double t; scanf("%lf",&t);
        x=t;
    }
    void kr(ll &x)
    {
        scanf("%I64d",&x);
    }
    struct P
    {
        lod x,y;
        void read()
        {
            kr(x); kr(y);
        }
        P operator+(const P &t)const
        {
            return {x+t.x,y+t.y};
        }
        P operator-(const P &t)const
        {
            return {x-t.x,y-t.y};
        }
        P operator*(ld t)const
        {
            return {x*t,y*t};
        }
        P operator/(ld t)const
        {
            return {x/t,y/t};
        }
        lod operator*(const P &t)const
        {
            return x*t.y-y*t.x;
        } //叉积
        lod operator%(const P &t)const
        {
            return x*t.x+y*t.y;
        } //点积
        bool operator<(const P &t)const
        {
            return sgn(x-t.x)<0||sgn(x-t.x)==0&&sgn(y-t.y)<0;
        }
        bool operator==(const P &t)const
        {
            return sgn(x-t.x)==0&&sgn(y-t.y)==0;
        }
        ld ang()const
        {
            return atan2(y,x);
        }
        ld length()const
        {
            return sqrt(x*x+y*y);
        }
        P rotate(const P &t,ld sita)const
        {
            return {(x-t.x)*cos(sita)-(y-t.y)*sin(sita)+t.x,
                    (x-t.x)*sin(sita)+(y-t.y)*cos(sita)+t.y};
        } //逆时针转sita
        ld btang(const P &t)const
        {
            return acos( (*this%t)/length()/t.length() );
        } //向量夹角
        P midvec(const P &t)const
        {
            return (*this)/length()+t/t.length();
        } //角平分向量
    };
     
    struct LINE
    {
        P p1,p2;
        void read()
        {
            p1.read(); p2.read();
        }
        LINE midLINE()
        {
            P midp=(p1+p2)/2;
            P v=p2-p1;
            v=v.rotate({0,0},pi/2);
            return {midp,midp+v};
        } //中垂线
        bool have1(const P &p)const
        {
            return sgn( (p-p1)*(p-p2) )==0&&sgn( (p-p1)%(p-p2) )<=0;
        } //线段上有点
        bool have2(const P &p)const
        {
            return sgn( (p-p1)*(p-p2) )==0&&sgn( (p-p1)%(p2-p1) )>=0;
        } //射线上有点
        bool have3(const P &p)const
        {
            return sgn( (p-p1)*(p-p2) )==0;
        } //直线上有点
        lod areawith(const P &p)const
        {
            return abs( (p1-p)*(p2-p)/2 );
        } //线段和点围成面积
        P vecfrom(const P &p)const
        {
            P v=(p2-p1);
            v=v.rotate({0,0},pi/2);
            ld s1=(p1-p)*(p2-p);
            ld s2=v*(p2-p1);
            v=v*(s1/s2);
            return v;
        }//点到直线垂足的向量
        P footfrom(const P &p)const
        {
            P v=vecfrom(p);
            return p+v;
        } //点到直线垂足
        ld dis1from(const P &p)const
        {
            P foot=footfrom(p);
            if (have1(foot)) return (foot-p).length();
            return min( (p1-p).length(),(p2-p).length());
        }//点到线段距离
        ld dis2from(const P &p)const
        {
            P foot=footfrom(p);
            if (have2(foot)) return (foot-p).length();
            return (p1-p).length();
        }//点到射线距离
        ld dis3from(const P &p)const
        {
            return vecfrom(p).length();
        }//点到直线距离
        P symP(const P &p)const
        {
            P v=vecfrom(p);
            return p+v*2;
        } //点关于直线的对称点
     
     
     
        //1线段 2射线 3直线
        bool isct11(const LINE &L)const
        {
            P a1=p1,a2=p2;
            P b1=L.p1,b2=L.p2;
            if (sgn( max(a1.x,a2.x)-min(b1.x,b2.x) )<0||
                sgn( max(b1.x,b2.x)-min(a1.x,a2.x) )<0||
                sgn( max(a1.y,a2.y)-min(b1.y,b2.y) )<0||
                sgn( max(b1.y,b2.y)-min(a1.y,a2.y) )<0)
                    return 0;
            lod tmp1=(a2-a1)*(b1-a1);
            lod tmp2=(a2-a1)*(b2-a1);
            if (sgn(tmp1)<0&&sgn(tmp2)<0||sgn(tmp1)>0&&sgn(tmp2)>0) return 0;
            tmp1=(b2-b1)*(a1-b1);
            tmp2=(b2-b1)*(a2-b1);
            if (sgn(tmp1)<0&&sgn(tmp2)<0||sgn(tmp1)>0&&sgn(tmp2)>0) return 0;
            return 1;
        }
        //前提是不重合且有交点,p1沿p2-p1方向到达L上的长度,负数表示反向
        //直线交多边形需要用到
        ld dis33(const LINE &L)const
        {
            return (L.p1-p1)*(L.p2-p1) / ( (p2-p1)*(L.p2-L.p1) )
                    * (p2-p1).length();
        }
        P isctPoint(const LINE &L)const
        {
            ld len=dis33(L);
            P v=p2-p1;
            return p1+v*(len/v.length());
        }
    };
    ll n,x,y,z,w,ans;
    LINE a[1001];
    map<pair<ll,ll>,set<ll> >f;
    ll gcd(ll x,ll y){return y?gcd(y,x%y):x;}
    bool check(lod k){return fabs(k-round(k))<eps;}
    #define mp make_pair
    int main()
    {
        kr(n);
        for(ll i=1;i<=n;i++)
          {
          kr(x),kr(y),kr(z),kr(w);
          ll dx=abs(z-x),dy=abs(w-y);
          ans+=gcd(dx,dy)+1;
          a[i]={{(lod)x,(lod)y},{(lod)z,(lod)w}};
          }
        for(ll i=1;i<=n;i++)
          for(ll j=i+1;j<=n;j++)
            if(a[i].isct11(a[j]))
              {
              P p=a[i].isctPoint(a[j]);
              if(check(p.x) && check(p.y))
                f[mp(round(p.x),round(p.y))].insert(i),
                f[mp(round(p.x),round(p.y))].insert(j);
              }
        for(auto x:f)ans-=(ll)x.second.size()-1;
        printf("%I64d
    ",ans);
        return 0;
    }
    View Code

    1036F - Relatively Prime Powers    20180907

    考虑预处理不满足条件的数,设(k_i)的gcd值为K,显然当一个数x对应的K>1时,有(x=m^{K}),这里m为大于1的整数。因此我们可以发现其实不满足条件的数就是满足(x=m^{K})的数x的集合,其中m,K均为大于1的整数。由于n的范围是1e18,所以可以暴力预处理K>2的情况,并把可以表示为平方数的数暂时去掉,之后排序再去重一下就好了。

    代码中的Sqrt是为了防止精读误差写的,以前被坑过 于是后来较大的数开方就都这么写了_(:з」∠)_

    #include<bits/stdc++.h>
    using namespace std;
    #define LL long long
    LL T,n,cnt,f[2000001];
    LL Sqrt(LL k)
    {
        LL x=sqrt(k);
        while(x*x<k)x++;
        while(x*x>k)x--;
        return x;
    }
    bool check(LL k)
    {
        LL x=Sqrt(k);
        return x*x<k;
    }
    int main()
    {
        LL N=1000000000000000000ll;
        for(LL i=2;i<=1000000;i++)
          {
          LL b=i*i;
          while(b<=N/i)
            {
            b*=i;
            if(check(b))
              f[++cnt]=b;
            }
          }
        sort(f+1,f+cnt+1);
        cnt=unique(f+1,f+cnt+1)-f-1;
        scanf("%I64d",&T);
        while(T--)scanf("%I64d",&n),printf("%I64d
    ",n-(LL)(upper_bound(f+1,f+cnt+1,n)-f-1)-Sqrt(n));
        return 0; 
    }
    View Code

    1036G - Sources and Sinks    20180908

    显然原图联通等价于由源点和汇点组成的图联通,考虑源点的集合X,X中源点能到达的汇点的集合为Y,可以发现若|Y|<=|X|,则答案一定是NO。遍历所有源点的子集(空集和全集)即可

    #include<bits/stdc++.h>
    using namespace std;
    #define N 1000001
    int n,m,u,v,k,I[N],O[N];
    vector<int>d[N],t;
    bool x[21][N];
    set<int>s;
    void dfs(int k,int cur)
    {
        x[k][cur]=true;
        for(auto nxt:d[cur])
          if(!x[k][nxt])dfs(k,nxt);
    }
    int main()
    {
        scanf("%d%d",&n,&m);
        for(int i=1;i<=m;i++)
          scanf("%d%d",&u,&v),
          d[u].push_back(v),
          I[v]++,O[u]++;
        for(int i=1;i<=n;i++)
          {
          if(!I[i])dfs(k++,i);
          if(!O[i])t.push_back(i);
          }
        for(int i=1;i<(1<<k)-1;i++)
          {
          s.clear();
          int cnt=0;
          for(int j=0;j<k;j++)
            if(i&(1<<j))
              {
              cnt++;
              for(auto nxt:t)
                if(x[j][nxt])s.insert(nxt);
              }
          if(s.size()<=cnt)return printf("NO
    "),0;
          }
        return printf("YES
    "),0;
    }
    View Code
  • 相关阅读:
    Java Spring MVC框架搭建(一)
    LeetCode 239. Sliding Window Maximum(Hard)
    LeetCode 238. Product of Array Except Self
    LeetCode 237 Delete Node in a Linked List
    LeetCode 236. Lowest Common Ancestor of a Binary Tree
    LeetCode 235 Lowest Common Ancestor of a Binary Search Tree
    LeetCode 234. Palindrome Linked List
    LeetCode 232. Implement Queue using Stacks
    LeetCode 231. Power of Two
    LeetCode 230. Kth Smallest Element in a BST
  • 原文地址:https://www.cnblogs.com/DeaphetS/p/9607751.html
Copyright © 2011-2022 走看看