zoukankan      html  css  js  c++  java
  • JZOJ6024. 【GDOI2019模拟2019.2.16】网格

    Description

    在这里插入图片描述

    多组数据,1<=n,T<=5e5

    Solution

    • 通过找规律 我们发现我们可以将答案分为左上到右下,右上到左下两种吗,并且既不重复,也不遗漏。
    • 例如:
      1100000
      1100000
      0010000
      0001110
      0001110
      0001110
      0000001
    • 这个状态,最后必然合法。对于这个左上到右下的状态里面的每一个1构成的正方形,又分别是一个右上到左下的子状态。这样就不会重复了,如此交替直到边长为1。
    • 于是我们设一个f[i]表示左上到右下的边长为i的正方形的方案数,由于对称,右上到左下是一样的。
    • 那么就变成了一个组合的问题,我们可以n2解决。
    • 发现组合的时候十分有规律性,将f生成函数一下。
    • F(x)=sigma(ai*xi),ai即为f[i]。
    • F(x)=sigma(F(x)i)[i为2~inf] + x
    • 即将当前块分为2块、3块、…inf块,多项式相乘,最后再补上分一块的a1++
    • 解方程,首先等比数列求和,其中有一项为F(x)inf=0。由于F(x)有意义的位只有小于等于n的,而且F(x)并没有常数项,所以在无数次后有意义的位数为0。
    • 求根公式中有正负号,但是由于答案无常数项,所以只有减才能满足。
    • 化简得F(x)=(x+1-sqrt(x2-6x+1))/4
    • 多项式开根套上即可。最后答案即为f[n]*2。
    • standing…
  • 相关阅读:
    数据库连接单例模式
    魔术方法
    序列化与反序列化
    设计模式
    类的自动加载
    错误处理
    匿名类--php7.0以上
    OpenCV中HSV颜色模型及颜色分量范围
    Opencv 轮廓提取
    opencv 二值化_OpenCV二值图像案例分析精选 | 第二期
  • 原文地址:https://www.cnblogs.com/DeepThinking/p/11700949.html
Copyright © 2011-2022 走看看