zoukankan      html  css  js  c++  java
  • hdu1159

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 15192    Accepted Submission(s): 629

    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     
    Sample Input
    abcfbc abfcab programming contest abcd mnp
     
    Sample Output
    4 2 0
     
     
     
     
    1. #include<iostream>
    2. #include<cstdio>
    3. #include<cstring>
    4. using namespace std;
    5. #define max(a,b)  ((a)>(b)?(a):(b))
    6. int dp[5001][5001];
    7. char s1[1500],s2[1500];
    8. int main()
    9. {
    10.     memset(s1,'\0',sizeof(s1));
    11.     memset(s2,'\0',sizeof(s2));
    12.     while(scanf("%s%s",s1+1,s2+1)!=EOF)
    13.     {
    14.         int i,j,len1,len2;
    15.         len1=strlen(s1+1);
    16.         len2=strlen(s2+1);
    17.         for(i=0;i<=len1;i++)
    18.             dp[0][i]=0;
    19.         for(i=0;i<=len2;i++)
    20.             dp[i][0]=0;
    21.         for(i=1;i<=len1;i++)
    22.             for(j=1;j<=len2;j++)
    23.             {
    24.                 if(s1[i]==s2[j])
    25.                     dp[i][j]=dp[i-1][j-1]+1;
    26.                 else
    27.                     dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
    28.             }
    29.             printf("%d\n",dp[len1][len2]);
    30.             memset(s1,'\0',sizeof(s1));
    31.             memset(s2,'\0',sizeof(s2));
    32.     }
    33.     return 0;
    34. }


     

  • 相关阅读:
    银行业务调度系统
    交通灯管理系统
    Java高新技术
    Java反射机制
    java的集合框架
    正则表达式
    IPD CBB
    TCP的可靠传输(依赖流量控制、拥塞控制、连续ARQ)
    等价类划分
    Pycharm常用配置汇总
  • 原文地址:https://www.cnblogs.com/Deng1185246160/p/2953056.html
Copyright © 2011-2022 走看看