zoukankan      html  css  js  c++  java
  • poj 1861 Network

    Network
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 14056   Accepted: 5509   Special Judge

    Description

    Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). 
    Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. 
    You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. 

    Input

    The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs.

    Output

    Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.

    Sample Input

    4 6
    1 2 1
    1 3 1
    1 4 2
    2 3 1
    3 4 1
    2 4 1
    

    Sample Output

    1
    4
    1 2
    1 3
    2 3
    3 4
    

    Source

    Northeastern Europe 2001, Northern Subregion
     
     

    分析:

    kruskal算法

     1 #include<iostream>
     2 #include<queue>
     3 #include<cstdio>
     4 #include<cstring>
     5 #include<cmath>
     6 #include<algorithm>
     7 using namespace std;
     8 /*struct point{
     9     int x,y;
    10 };*/
    11 struct edge{
    12     int u,v,w;
    13 };
    14 //point po[1005];
    15 int f[1005],c[1005];
    16 edge e[15005];
    17 bool cmp(edge a,edge b){
    18     return a.w<b.w;
    19 }
    20 int find(int i){//并查集 
    21     if(i!=f[i]){
    22         f[i]=find(f[i]);
    23     }
    24     return f[i];
    25 }
    26 /*double get_dis(int i,int j){
    27     int x=po[i].x-po[j].x;
    28     int y=po[i].y-po[j].y;
    29     return sqrt(double(x*x+y*y));
    30 }*/
    31 void Kruskal(int n,int m){
    32     int i=0,j=0;
    33     for(;i<m;i++){
    34         int p=find(e[i].u);
    35         int q=find(e[i].v);
    36         if(p!=q){
    37             if(p>q){
    38                 f[q]=p;
    39             }
    40             else{
    41                 f[p]=q;
    42             }
    43         c[j++]=i;
    44         }
    45         if(j==n){
    46         break; 
    47     } 
    48 }
    49     cout<<e[c[j-1]].w<<endl;
    50     cout<<n<<endl;
    51     for(i=0;i<n;i++){
    52         cout<<e[c[i]].u<<' '<<e[c[i]].v<<endl;
    53     } 
    54 }
    55 int main(){
    56     int n,m;
    57     scanf("%d%d",&n,&m);
    58     int i=0;
    59     for(;i<n;i++){
    60         f[i]=i;
    61     }
    62     for(i=0;i<m;i++){
    63         scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
    64     }
    65     sort(e,e+m,cmp);
    66     Kruskal(n-1,m);//存储n-1条边 
    67     return 0;
    68 }
  • 相关阅读:
    用代码说话:如何正确启动线程
    我的2019——菜鸟互联网找实习和工作记录
    Python网络爬虫——Appuim+夜神模拟器爬取得到APP课程数据
    用代码说话:如何在Java中实现线程
    用代码说话:synchronized关键字和多线程访问同步方法的7种情况
    RabbitMQ(四):使用Docker构建RabbitMQ高可用负载均衡集群
    RabbitMQ(三):RabbitMQ与Spring Boot简单整合
    RabbitMQ(二):RabbitMQ高级特性
    RabbitMQ(一):RabbitMQ快速入门
    使用Docker部署Spring Boot项目
  • 原文地址:https://www.cnblogs.com/Deribs4/p/4288296.html
Copyright © 2011-2022 走看看