zoukankan      html  css  js  c++  java
  • poj 2115 C Looooops

    C Looooops
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 18799   Accepted: 4924

    Description

    A Compiler Mystery: We are given a C-language style for loop of type 
    for (variable = A; variable != B; variable += C)
    
    statement;

    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k

    Input

    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop. 

    The input is finished by a line containing four zeros. 

    Output

    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 

    Sample Input

    3 3 2 16
    3 7 2 16
    7 3 2 16
    3 4 2 16
    0 0 0 0
    

    Sample Output

    0
    2
    32766
    FOREVER

    Source

    分析:

    扩展欧几里得:

    对于ax+by=c,求最小整数解

    d=gcd(a,b)

    1.先求ax0+by0=d的x0,y0。然后两边同乘d得a(x0*c/d)+b(y0*c/d)=gcd(a,b)*c/d=c,求出x=x0*c/d,y=y0*c/d

    2.求最小解:由上求出特解x,最小解=(x%(b/d)+b/d)%(b/d)

    参考学习网站:http://www.cnblogs.com/comeon4mydream/archive/2011/07/18/2109060.html

     1 #include<cstdio>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<string>
     5 #include<cstring>
     6 #include<vector>
     7 using namespace std;
     8 typedef long long ll;
     9 ll exgcd(ll a,ll b,ll &x,ll &y){//扩展欧几里得算法
    10     if(b==0){
    11         x=1;
    12         y=0;
    13         return a;
    14     }
    15     ll d=exgcd(b,a%b,x,y);
    16     ll t=y;
    17     y=x-a/b*y;
    18     x=t;
    19     return d;
    20 }
    21 int main(){
    22     ll A, B, C, k;
    23     while(cin>>A>>B>>C>>k&&(A||B||C||k)){
    24         ll b=1ll<<k,x,y;
    25         ll c=B-A,a=C;
    26         ll d=exgcd(a,b,x,y);
    27         if(c%d){
    28             cout<<"FOREVER"<<endl;
    29         }
    30         else{
    31             b=b/d;//如果少了这歩,最终求得的就可能不是最小整数解,而是某一特解。可以仔细想一想为什么b要除以d
    32             //cout<<d<<endl;
    33             cout<<((x*c/d%b+b)%b)<<endl;//求最小整数解
    34         }
    35     }
    36     return 0;
    37 }
  • 相关阅读:
    UVA 10970 Big Chocolate
    HBuilder 安装uviewui2.0
    域名访问配置支持ipv6
    SSIS学习视频(SQL Server 2008)
    碰到MySQL无法启动1067错误问题
    对存储过程进行加密和解密(SQL 2008/SQL 2012)
    脚本文件比较工具WinMerge
    通过SQL绘制杨辉三角
    通用分页存储过程(SQL Server 2005)
    重新组织和重新生成索引sp_RefreshIndex
  • 原文地址:https://www.cnblogs.com/Deribs4/p/4297600.html
Copyright © 2011-2022 走看看