zoukankan      html  css  js  c++  java
  • 蓝桥杯 历届试题 买不到的数目

    历届试题 买不到的数目  
    时间限制:1.0s   内存限制:256.0MB
          
    问题描述

    小明开了一家糖果店。他别出心裁:把水果糖包成4颗一包和7颗一包的两种。糖果不能拆包卖。

    小朋友来买糖的时候,他就用这两种包装来组合。当然有些糖果数目是无法组合出来的,比如要买 10 颗糖。

    你可以用计算机测试一下,在这种包装情况下,最大不能买到的数量是17。大于17的任何数字都可以用4和7组合出来。

    本题的要求就是在已知两个包装的数量时,求最大不能组合出的数字。

    输入格式

    两个正整数,表示每种包装中糖的颗数(都不多于1000)

    输出格式

    一个正整数,表示最大不能买到的糖数

    样例输入1
    4 7
    样例输出1
    17
    样例输入2
    3 5
    样例输出2
    7

    证明:

    假设输入的数是a、b

    则(a,b)==1

    证明:由裴蜀定理

    对任何整数a、b和它们的最大公约数d,关于未知数x和y的线性丢番图方程(称为裴蜀等式):

    ax + by = m

    有解当且仅当m是d的倍数。

    如果(a,b)!=1,则ax+xy=c中满足题意的c有无穷多个

    假设不能表示为 形如 x*a+y*b x>=0 ,y>=0 的最大的整数是 a*b-a-b 
    下面只用考虑a>1,b>1 的情形

    证明:

    1 首先证明,关于x,y的不定方程: x*a+y*b=a*b-a-b 无非负整数解
    反设这个方程有解,变形一下,x*a+(y+1)*b=a*b-a ,则推出a|(y+1)*b (|是整除符号),那么由于(a,b)=1 ,推出, a|y+1 ,由于y+1!=0, 这样y+1>=a
    带回原方程,x*a+(y+1)*b>=0*a+a*b>=ab>ab-a, 和原方程矛盾。

    2 其次证明 如果n>ab-a-b , 方程x*a+y*b=n 一定有非负整数解。
    只需证明:
    取l>=1 证明a*b-a-b+l =x*a+y*b 一定有非负整数解。
    先考虑如下一个方程,x*a+y*b=l (l,不是1),由裴蜀定理,这个方程一定有无穷多组整数解,取出一组解,不妨设 x0*a-y0*b=l(x0>=1 ,y0>=0)

    再使得y0满足y0<=a-1 
    (由于所有解里面y的取值是mod a 同余的,一定可以取到0~a-1这个范围里面)

    取出来了这个x0,y0以后,带回方程a*b-a-b+l =x*a+y*b ,
    则 a*b-a-b+l =a*b-a-b+(x0*a-y0*b)=(a-y0-1)*b+(x0-1) *a , a,b的系数都是非负的了,所以解找到了。

    1 #include <iostream>
    2 using namespace std;
    3 int main()
    4 {
    5 int a, b;
    6 cin >> a >> b;
    7 cout << a * b - a - b << endl;
    8 return 0;
    9 }
  • 相关阅读:
    SmartJS 第一期(0.1)发布
    smartJS 0.1 API 讲解
    smartJS 0.1 API 讲解
    20160113006 asp.net实现ftp上传代码(解决大文件上传问题)
    20151224001 GridView 多按钮的各种使用方法
    20151221001 GridView 模板
    20151218001 雕爷自白:我为什么非要这么干
    20151210001 DataGridView 选中与被选中
    20151126001 网页中嵌入谷歌动态地图
    20151125001 询问对话框 中的文字换行
  • 原文地址:https://www.cnblogs.com/Deribs4/p/4405618.html
Copyright © 2011-2022 走看看