63. Unique Paths II
- Total Accepted: 70691
- Total Submissions:237311
- Difficulty: Medium
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
思路:
关于存储空间的优化,可以看姐妹题:Leetcode 62. Unique Paths
0<=i<m,0<=j<n:
1. obstacleGrid[i][j]==1,则(i,j)的路径数=0
2. obstacleGrid[i][j]==0时
2.1 j==0,(i,0)的路径数==(i-1,0)的路径数
2.2 i>0,(i,j)的路径数=(i-1,j)的路径数+(i,j-1)的路径数
代码:
1 class Solution { 2 public: 3 int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) { 4 int i,j,m=obstacleGrid.size(),n=obstacleGrid[0].size(); 5 vector<int> cur(n); 6 cur[0]=1; 7 for(i=0;i<m;i++){ 8 for(j=0;j<n;j++){ 9 if(obstacleGrid[i][j]){ 10 cur[j]=0; 11 } 12 else{ 13 if(j>0){ 14 cur[j]+=cur[j-1]; 15 } 16 } 17 } 18 } 19 return cur[n-1]; 20 } 21 };