zoukankan      html  css  js  c++  java
  • Leetcode 338. Counting Bits

    338. Counting Bits

    • Total Accepted: 35688
    • Total Submissions: 61823
    • Difficulty: Medium

    Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.

    Example:
    For num = 5 you should return [0,1,1,2,1,2].

    Follow up:

    • It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
    • Space complexity should be O(n).
    • Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.

    Hint:

    1. You should make use of what you have produced already.
    2. Divide the numbers in ranges like [2-3], [4-7], [8-15] and so on. And try to generate new range from previous.
    3. Or does the odd/even status of the number help you in calculating the number of 1s?

    思路:假设res[i]意味着数字i的二进制中1的个数。

    对于数i有res[i*2]=res[i];res[i*2+1]=res[i]

    其实也可以写成这样:res[i]=res[i/2] + i%2。

    代码:

    对于数i有,res[i*2]=res[i],res[i*2+1]=res[i]。

    用了一个技巧,O(n/2)的复杂度。

    class Solution {
    public:
        vector<int> countBits(int num) {
            vector<int> res(num + 2, 0);//技巧:多申请了一个内存。num为偶数时会用到,num为奇数时用不到。最后都要删除。
            int half = num/2;
            for (int i = 0; i <= half; i++) {
                res[i*2] = res[i];
                res[i*2+1] = res[i] + 1;
            }
            res.pop_back();//不论num是奇数还是偶数,这步都要实施
            return res;
        }
    };

    其实也可以写成这样:res[i]=res[i/2] + i%2。

     1 class Solution {
     2 public:
     3     vector<int> countBits(int num) {
     4         vector<int> res(num+1,0);
     5         int i;
     6         for(i=1;i<=num;i++){
     7             res[i]=res[i>>1]+i%2;
     8         }
     9         return res;
    10     }
    11 };
  • 相关阅读:
    javascript:history.go()和history.back()的区别
    ASP.NET26个性能优化方法
    20 个 jQuery 分页插件和教程,附带实例
    JQuery中$.ajax()方法参数详解
    记住键盘快捷键大全 提高电脑操作速度
    URL重写案例
    url重写(伪静态)IIS配置图解
    URL重写的优缺点分析
    C# GUID的使用
    js中的编码与解码
  • 原文地址:https://www.cnblogs.com/Deribs4/p/5720307.html
Copyright © 2011-2022 走看看