zoukankan      html  css  js  c++  java
  • Leetcode 222. Count Complete Tree Nodes

    Given a complete binary tree, count the number of nodes.

    Definition of a complete binary tree from Wikipedia:
    In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.

    Next challenges: Closest Binary Search Tree Value

    思路:题目要求的是计算完全二叉树的总节点数。假设完全二叉树的树高是n(n>0),并且树是满的,那么树的总节点是2^(n)-1。

    首先想到的是O(n)的遍历每个节点的方案,但是这个方案会出现"Time Limit Exceeded"错:

     1 /**
     2  * Definition for a binary tree node.
     3  * public class TreeNode {
     4  *     int val;
     5  *     TreeNode left;
     6  *     TreeNode right;
     7  *     TreeNode(int x) { val = x; }
     8  * }
     9  */
    10 public class Solution {
    11     public int countNodes(TreeNode root) {
    12         if (root == null) {
    13             return 0;
    14         }
    15         return countNodes(root.left) + countNodes(root.right) + 1;
    16     }
    17 }

    思路一:注意到完全二叉树中,最后一层的最后一个叶子结点要么在左子树,要么在右自树上,这就说明左右子数至少有一棵是满的完全二叉树。因此只要不断遍历当前子树的根的左子树,不断遍历根的右子树,如果最后两边都遍历到null,说明该子树是满的,计算出子树树高h,只要返回2^(h)-1就是子树包含的总节点数。

    代码:

     1 /**
     2  * Definition for a binary tree node.
     3  * public class TreeNode {
     4  *     int val;
     5  *     TreeNode left;
     6  *     TreeNode right;
     7  *     TreeNode(int x) { val = x; }
     8  * }
     9  */
    10 public class Solution {
    11     public int countNodes(TreeNode root) {
    12         int height = 0;
    13         TreeNode right = root;
    14         TreeNode left = root;
    15         while(right != null) {
    16             left = left.left;
    17             right = right.right;
    18             height++;
    19         }
    20         if(left == null) {//判断当前子树是否为满的完全二叉树
    21             return (1<<height) - 1;
    22         }
    23         return 1 + countNodes(root.left) + countNodes(root.right);
    24     }
    25 }

    时间复杂度:O(log(n)*log(n))

     T(n) = T(n/2) + c1 lgn = T(n/4) + c1 lgn + c2 (lgn - 1) = ... = T(1) + c [lgn + (lgn-1) + (lgn-2) + ... + 1] = O(lgn*lgn)  

    思路二:注意到完全二叉树的节点总数和树高是有关联的。如果左子树和右子树的树高相同,则说明最后的叶节点在右子树,那么可以先根据完全二叉树节点计算公式先计算左子树的节点总数+1,然后再递归计算右子树的节点数;如果左子树和右子树的树高不同,说明最后的叶节点在左子树,那么可以先根据完全二叉树节点计算公式先计算右子树的节点总数+1,然后再递归计算左子树的节点数。

    代码:

     1 /**
     2  * Definition for a binary tree node.
     3  * public class TreeNode {
     4  *     int val;
     5  *     TreeNode left;
     6  *     TreeNode right;
     7  *     TreeNode(int x) { val = x; }
     8  * }
     9  */
    10 public class Solution {
    11     public int height(TreeNode root) {//子树的根为空,则树高为0
    12         return root == null ? 0 : 1 + height(root.left);
    13     }
    14     public int countNodes(TreeNode root) {
    15         int h = height(root);
    16         return h == 0 ? 0 : 
    17             h - 1 == height(root.right) ? 
    18                 (1<<(h - 1)) + countNodes(root.right)//最后的叶子节点在右子树,左子树是满的,那么只要求右子树的节点数
    19                 : (1<<(h - 2)) + countNodes(root.left);//最后的叶子节点在左子树,右子树是满的,那么只要求左子树的节点数
    20     }
    21 }

    时间复杂度:O(log(n)*log(n))

  • 相关阅读:
    去除安卓apk中的广告
    公司固定资产管理细则
    固定资产基础知识
    C#的WebBrowser操作frame
    C#程序集版本控制文件属性祥解
    c#使用RSA进行注册码验证
    Web前端开发十日谈
    Web.xml配置详解
    IBM WebSphere MQ的C#工具类以及源码(net)
    Castle IOC FOR MVC 使用方法
  • 原文地址:https://www.cnblogs.com/Deribs4/p/7190803.html
Copyright © 2011-2022 走看看