Given a string s, find the longest palindromic subsequence's length in s. You may assume that the maximum length of s is 1000.
Example 1:
Input:
"bbbab"
Output:
4
One possible longest palindromic subsequence is "bbbb".
Example 2:
Input:
"cbbd"
Output:
2
One possible longest palindromic subsequence is "bb".
Similar Questions: Longest Palindromic Substring Palindromic Substrings
Next challenges:
方法一:迭代。
思路:dp[i][j]表示的字符串i位置到j位置之间(包括i,j)含有的palindromic subsequence的数目,那么有如果s[i]==s[j],那么dp[i][j]=dp[i+1][j-1]+2;否则dp[i][j]=max(dp[i+1][j],dp[i][j-1])。具体实现的时候,应该先确定i和j位置之间(不包含i和j)的所有短字符串中的palindromic subsequence的数目,然后再求dp[i][j]。
代码:
1 public class Solution { 2 public int longestPalindromeSubseq(String s) { 3 int[][] dp = new int[s.length()][s.length()]; 4 for(int j = 0; j < s.length(); j++) { 5 dp[j][j] = 1; 6 for(int i = j - 1; i >= 0; i--) { 7 if(s.charAt(i) == s.charAt(j)) dp[i][j] = dp[i + 1][j - 1] + 2; 8 else dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]); 9 } 10 } 11 return dp[0][s.length() -1]; 12 } 13 }
方法二:递归。
思路和方法一相同。
代码:
1 public class Solution { 2 public int longestPalindromeSubseq(String s) { 3 return helper(s, 0, s.length() - 1, new Integer[s.length()][s.length()]); 4 } 5 6 private int helper(String s, int i, int j, Integer[][] memo) { 7 if(memo[i][j] != null) return memo[i][j];//初始化Integer数组,所以数组中的每个元素是个类,如果类没有初始化就是null 8 if(i > j) return 0; 9 if(i == j) return 1; 10 if(s.charAt(i) == s.charAt(j)) memo[i][j] = helper(s, i + 1, j - 1, memo) + 2; 11 else memo[i][j] = Math.max(helper(s, i, j - 1, memo), helper(s, i + 1, j, memo)); 12 return memo[i][j]; 13 } 14 }