zoukankan      html  css  js  c++  java
  • Stack, Queue and Priority Queue

      In comparison with Dynamic Sets such as BST and Hash Table, Stack, Queue and Priority Queue are relatively simple abstract data types. Albeit their easy implementation in coding, their importance can never be overlooked.


    1. Stack

      A Stack conforms to the principle of First-In, Last-Out (FILO). Here is a Stack based on Single-Linked List.

     1 class Stack<T> {
     2     private class Node<T> {
     3         public Node<T> next;
     4         public T data;
     5     }
     6     
     7     private Node<T> head;
     8     
     9     public Stack() {
    10         head = new Node<T>();
    11     }
    12     public void push(T item) {
    13         // Add an item to the top of the stack
    14         Node<T> top = new Node<T>();
    15         top.data = item;
    16         top.next = head.next;
    17         head.next = top;
    18     }
    19     public boolean isEmpty() {
    20         // Return whether the stack is empty
    21         return head.next==null;
    22     }
    23     public T peek() {
    24         // Return the top item of the stack
    25         if (head.next==null) {
    26             throw new RuntimeException("Stack Underflow");
    27         } else {
    28             return head.next.data;
    29         }
    30     }
    31     public T pop() {
    32         // Extract the top item of the stack
    33         if (head.next==null) {
    34             throw new RuntimeException("Stack Underflow");
    35         } else {
    36             T val = head.next.data;
    37             head.next = head.next.next;
    38             return val;
    39         }
    40     }
    41 }

    2. Queue

      Instead of adopting FILO principle, a Queue adheres to the principle of First-In, First-Out (FIFO).

     1 class Queue<T> {
     2     private class Node<T> {
     3         public Node<T> next;
     4         public T data;
     5     }
     6     
     7     private Node<T> head, tail;
     8     
     9     public Queue() {
    10         head = new Node<T>();
    11         tail = head;
    12     }
    13     public void add(T item) {
    14         // Enqueue a new item
    15         tail.next = new Node<T>();
    16         tail = tail.next;
    17         tail.data = item;
    18     }
    19     public boolean isEmpty() {
    20         // Return whether the queue is empty
    21         return head==tail;
    22     }
    23     public T peek() {
    24         // Return the head of the queue
    25         if (head==tail) {
    26             throw new RuntimeException("Queue Underflow");
    27         } else {
    28             return head.next.data;
    29         }
    30     }
    31     public T poll() {
    32         // Dequeue an item from the queue
    33         if (head==tail) {
    34             throw new RuntimeException("Queue Underflow");
    35         } else {
    36             T val = head.next.data;
    37             if (head.next==tail) {
    38                 tail = head;
    39             }
    40             head.next = head.next.next;
    41             return val;
    42         }
    43     }
    44 }

    3. Priority Queue

      Here I shall provide a Min-Priority Queue based on a Binary Heap.

     1 class MinPriorityQueue<T extends Comparable> {
     2     private T[] items;        // data of heap items
     3     private int len;            // current length
     4     private int size;        // size of space
     5     
     6     public MinPriorityQueue(int size) {
     7         if (size<=0) {
     8             throw new RuntimeException("Illegal Initial Size");
     9         } else {
    10             this.size = size;
    11             items = (T[]) new Comparable[size];
    12         }
    13     }
    14     public void add(T item) {
    15         // Add a new item to the priority queue
    16         if (len==size) {
    17             doubleSize();
    18         }
    19         items[len++] = item;
    20         sift_up(len-1);
    21     }
    22     private void doubleSize() {  
    23         // Double the space size when it's filled up  
    24         if ((size<<1)<0) {  
    25             throw new RuntimeException("Size Expansion Failed");  
    26         } else {  
    27             T[] tmp = items;  
    28             items = (T[]) new Comparable[size<<1];  
    29             for (int i=0;i<len;i++) {  
    30                 items[i] = tmp[i];  
    31             }  
    32             size <<= 1;  
    33         }  
    34     }  
    35     public boolean isEmpty() {
    36         // Return whether the priority queue is empty
    37         return len==0;
    38     }
    39     public T poll() {
    40         // Extract the head of the priority queue
    41         if (len==0) {
    42             return null;
    43         } else {
    44             T val = items[0];
    45             items[0] = items[--len];
    46             sift_down(0);
    47             return val;
    48         }
    49     }
    50     public T peek() {
    51         // Return the head of the priority Queue
    52         if (len==0) {
    53             return null;
    54         } else {
    55             return items[0];
    56         }
    57     }
    58     private void sift_up(int i) {
    59         // Adjustment made when items[i] is excessively small
    60         //                in terms of its current position
    61         int j = ((i-1)>>1);
    62         if (j<i && items[i].compareTo(items[j])<0) {
    63             T tmp = items[i];
    64             items[i] = items[j];
    65             items[j] = tmp;
    66             sift_up(j);
    67         }
    68     }
    69     private void sift_down(int i) {
    70         // Adjustment made when items[i] is excessively large
    71         //                in terms of its current position
    72         int j = (i<<1)+1, k = (i<<1)+2, idx = i;  
    73         if (j<len) {  
    74             if (items[idx].compareTo(items[j])>0) {  
    75                 idx = j;  
    76             }  
    77             if (k<len&&items[idx].compareTo(items[k])>0) {  
    78                 idx = k;  
    79             }  
    80             if (idx>i) {  
    81                 T tmp = items[i];  
    82                 items[i] = items[idx];  
    83                 items[idx] = tmp;  
    84                 sift_down(idx);  
    85             }  
    86         }  
    87     }
    88 }
  • 相关阅读:
    深入解析委托和事件
    一个小型工程报价系统(三层架构)
    DONET三层架构开发初步
    VS项目重命名工具
    Visual Studio 2012 应用软件开发新方式
    Consumer is not subscribed to any topics or assigned any partitions
    kafka的一些常用命令
    横向遍历二叉树
    Flume的断点续传解决
    实际生产用法CMS和G1
  • 原文地址:https://www.cnblogs.com/DevinZ/p/4411447.html
Copyright © 2011-2022 走看看