zoukankan      html  css  js  c++  java
  • Query on a tree I

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.
    We will ask you to perfrom some instructions of the following form:
    CHANGE i ti : change the cost of the i-th edge to ti
    or
    QUERY a b : ask for the maximum edge cost on the path from node a to node b

    Input

    The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.
    For each test case:
    In the first line there is an integer N (N <= 10000),
    In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
    The next lines contain instructions "CHANGE i ti" or "QUERY a b",
    The end of each test case is signified by the string "DONE".
    There is one blank line between successive tests.

    Output

    For each "QUERY" operation, write one integer representing its result.

    Example

    Input:

    1
    3
    1 2 1
    2 3 2
    QUERY 1 2
    CHANGE 1 3
    QUERY 1 2
    DONE

    Output:

    1
    3

    Solution

    树链剖分裸体
    md 我一开始看成了加和 打了树上差分 过了样例
    被cxy一语点醒
    顿时 世界都黑了 mmpmmp

    #include <bits/stdc++.h>
    using namespace std;
    #define maxn (int)(1e5+10)
    #define LL long long
    pair<int,int>mp[maxn];
    
    inline int read(){
    	int rtn=0,f=1;char ch=getchar();
    	while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    	while(isdigit(ch))rtn=(rtn<<1)+(rtn<<3)+ch-'0',ch=getchar();
    	return rtn*f;
    }
    
    int cnt,n,coc,m,p[maxn],size[maxn],son[maxn],dfn[maxn],top[maxn],dep[maxn],id[maxn],fa[maxn],w[maxn];
    
    struct node{
    	int a,b,nt,w;
    }e[maxn<<1];
    
    inline void add(int x,int y,int z){
    	e[++cnt].a=x;e[cnt].b=y;e[cnt].w=z;
    	e[cnt].nt=p[x];p[x]=cnt;
    }
    
    inline void dfs1(int k){
    	size[k]=1;
    	for(int i=p[k];i;i=e[i].nt){
    		int kk=e[i].b;
    		if(kk==fa[k])continue;
    		fa[kk]=k;
    		dep[kk]=dep[k]+1;
    		w[kk]=e[i].w;
    		dfs1(kk);
    		size[k]+=size[kk];
    		if(size[kk]>size[son[k]])son[k]=kk;
    	}
    }
    
    inline void dfs2(int x,int y){
    	top[x]=y;dfn[x]=++coc;id[coc]=x;
    	if(!son[x])return;
    	dfs2(son[x],y);
    	for(int i=p[x];i;i=e[i].nt){
    		int k=e[i].b;
    		if(k==fa[x]||k==son[x])continue;
    		dfs2(k,k);
    	}
    }
    
    namespace Link_Chain_SegmentTree{
    	LL maxv[maxn<<3];
    	inline void build(int p,int l,int r){
    		if(l==r)return (void)(maxv[p]=w[id[l]]);
    		int mid=l+r>>1;
    		build(p<<1,l,mid);
    		build(p<<1|1,mid+1,r);
    		maxv[p]=max(maxv[p<<1],maxv[p<<1|1]);
    	}
    	inline LL query(int p,int lp,int rp,int l,int r){
    		if(l>r)return 0;
    		if(l==lp&&r==rp)return maxv[p];
    		int mid=lp+rp>>1;
    		if(r<=mid)return query(p<<1,lp,mid,l,r);
    		else if(l>mid)return query(p<<1|1,mid+1,rp,l,r);
    		else return max(query(p<<1,lp,mid,l,mid),query(p<<1|1,mid+1,rp,mid+1,r));
    	}
    	inline LL query_chain(int x,int y){
    		LL rtn=0;
    		while(top[x]!=top[y]){
    			if(dep[top[x]]<dep[top[y]])swap(x,y);
    			rtn=max(rtn,query(1,1,n,dfn[top[x]],dfn[x]));
    			x=fa[top[x]]; 
    		}if(dep[x]>dep[y])swap(x,y);
    		return max(rtn,query(1,1,n,dfn[x]+1,dfn[y]));
    	}
    	inline void update(int p,int lp,int rp,int pos,LL val){
    		if(lp>rp)return;
    		if(lp==rp)return (void)(maxv[p]=val);
    		int mid=lp+rp>>1;
    		if(pos<=mid)update(p<<1,lp,mid,pos,val);
    		else update(p<<1|1,mid+1,rp,pos,val);
    		maxv[p]=max(maxv[p<<1],maxv[p<<1|1]);
    	}
    	inline void update_chain(int id, LL val){
    		int from=mp[id].first,to=mp[id].second;
    		if(dep[from]>dep[to])update(1,1,n,dfn[from],val);
    		else update(1,1,n,dfn[to],val);
    	}
    }using namespace Link_Chain_SegmentTree;
    
    int main(){
    	int T;scanf("%d",&T);
    	while(T--){
    		n;scanf("%d",&n);coc=0;
    		memset(p,0,sizeof(p));
    		memset(fa,0,sizeof(fa));
    		memset(son,0,sizeof(son));
    		for(int i=1;i<n;i++){
    			mp[i].first=read();mp[i].second=read();int w=read();
    			add(mp[i].first,mp[i].second,w); 
    			add(mp[i].second,mp[i].first,w); 
    		}
    		dfs1(1);dfs2(1,1) ;
    		build(1,1,n);
    		while(true){
    			char ch[10];scanf("%s",ch);
    			if(ch[0]=='D')break;
    			int x=read(),y=read();
    			if(ch[0]=='Q')printf("%lld
    ",query_chain(x,y));
    			if(ch[0]=='C')update_chain(x,y);
    		}
    	}
    	return 0;
    }
    /*
    1
    10
    2 1 6824
    3 1 21321
    4 2 26758
    5 1 13610
    6 4 19133
    7 4 20483
    8 7 10438
    9 8 19157
    10 6 25677
    C 2 11799
    Q 5 6
    Q 6 10
    Q 3 1
    C 5 9242
    C 3 15761
    C 2 28270
    C 8 8177
    C 5 21007
    Q 4 8
    D
    */ 
    
  • 相关阅读:
    lbs(查看附近的人),看看社交软件如何实现查看附近的人
    PHP框架中的日志系统
    PHP链式操作输出excel(csv)
    看看你的正则行不行——正则优化一般的json字符串
    PHP设计模式(三)
    PHP设计模式(二)
    PHP设计模式(一)
    PHP守护进程
    数据库的常用日志
    浅谈数据库事物
  • 原文地址:https://www.cnblogs.com/DexterYsw/p/7942151.html
Copyright © 2011-2022 走看看