LRU算法实现
以下是基于 双向链表 + HashMap 的 LRU 算法实现,对算法的解释如下:
访问某个节点时,将其从原来的位置删除,并重新插入到链表头部。这样就能保证链表尾部存储的就是最近最久未使用的节点,当节点数量大于缓存最大空间时就淘汰链表尾部的节点。
为了使删除操作时间复杂度为 O(1),就不能采用遍历的方式找到某个节点。HashMap 存储着 Key 到节点的映射,通过 Key 就能以 O(1) 的时间得到节点,然后再以 O(1) 的时间将其从双向队列中删除。
public class LRU<K, V> implements Iterable<K> {
private Node head;
private Node tail;
private HashMap<K, Node> map;
private int maxSize;
private class Node {
Node pre;
Node next;
K k;
V v;
public Node(K k, V v) {
this.k = k;
this.v = v;
}
}
public LRU(int maxSize) {
this.maxSize = maxSize;
this.map = new HashMap<>(maxSize * 4 / 3);
head = new Node(null, null);
tail = new Node(null, null);
head.next = tail;
tail.pre = head;
}
public V get(K key) {
if (!map.containsKey(key)) {
return null;
}
Node node = map.get(key);
unlink(node);
appendHead(node);
return node.v;
}
public void put(K key, V value) {
if (map.containsKey(key)) {
Node node = map.get(key);
unlink(node);
}
Node node = new Node(key, value);
map.put(key, node);
appendHead(node);
if (map.size() > maxSize) {
Node toRemove = removeTail();
map.remove(toRemove.k);
}
}
private void unlink(Node node) {
Node pre = node.pre;
Node next = node.next;
pre.next = next;
next.pre = pre;
node.pre = null;
node.next = null;
}
private void appendHead(Node node) {
Node next = head.next;
node.next = next;
next.pre = node;
node.pre = head;
head.next = node;
}
private Node removeTail() {
Node node = tail.pre;
Node pre = node.pre;
tail.pre = pre;
pre.next = tail;
node.pre = null;
node.next = null;
return node;
}
@Override
public Iterator<K> iterator() {
return new Iterator<K>() {
private Node cur = head.next;
@Override
public boolean hasNext() {
return cur != tail;
}
@Override
public K next() {
Node node = cur;
cur = cur.next;
return node.k;
}
};
}
}
转载自:https://github.com/CyC2018/CS-Notes/blob/master/notes/%E7%BC%93%E5%AD%98.md