zoukankan      html  css  js  c++  java
  • Product Oriented Recurrence(Codeforces Round #566 (Div. 2)E+矩阵快速幂+欧拉降幂)

    传送门

    题目

    [egin{aligned} &f_n=c^{2*n-6}f_{n-1}f_{n-2}f_{n-3}&\ end{aligned} ]

    思路

    我们通过迭代发现(f_n)其实就是由(c^{t_1},f_1^{t_2},f_2^{t_3},f_3^{t_4})相乘得到,因此我们可以分别用矩阵快速幂求出(t_1,t_2,t_3,t_4),最后用快速幂求得答案。
    对于(n<=3)的我们直接输出即可,(n>3)的我们先将(n)减去(3),然后进行求解。
    (f_1,f_2,f_3)的指数,我们可以推出(x_n=x_{n-1}+x_{n-2}+x_{n-3})

    [egin{aligned} (x_n&&x_{n-1}&&x_{n-2})=(x_{n-1}&&x_{n-2}&&x_{n-3}) left[ egin{matrix} 1 & 1 & 0\ 1 & 0 & 1\ 1 & 0 & 0\ end{matrix} ight] end{aligned} ]

    (c)的指数,我们可以推出(x_n=x_{n-1}+x_{n-2}+x_{n-3}+2n=x_{n-1}+x_{n-2}+x_{n-3}+2(n-1)+2):

    [egin{aligned} (x_n&&x_{n-1}&&x_{n-2}&&n&&1)=(x_{n-1}&&x_{n-2}&&x_{n-3}&&n-1&&1) left[ egin{matrix} 1 & 1 & 0 & 0 & 0\ 1 & 0 & 1 & 0 & 0\ 1 & 0 & 0 & 0 & 0\ 2 & 0 & 0 & 1 & 0\ 2 & 0 & 0 & 1 & 1\ end{matrix} ight] end{aligned} ]

    注意,由于我们处理出来的(x_1,x_2,x_3,x_4)都是指数部分,这里如果膜(1e9+7)的话是不对的,我们还需要对其进行欧拉降幂。

    代码实现

    #include <set>
    #include <map>
    #include <deque>
    #include <queue>
    #include <stack>
    #include <cmath>
    #include <ctime>
    #include <bitset>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    
    typedef long long LL;
    typedef pair<LL, LL> pLL;
    typedef pair<LL, int> pLi;
    typedef pair<int, LL> pil;;
    typedef pair<int, int> pii;
    typedef unsigned long long uLL;
    
    #define lson rt<<1
    #define rson rt<<1|1
    #define lowbit(x) x&(-x)
    #define name2str(name) (#name)
    #define bug printf("*********
    ")
    #define debug(x) cout<<#x"=["<<x<<"]" <<endl
    #define FIN freopen("D://code//in.txt","r",stdin)
    #define IO ios::sync_with_stdio(false),cin.tie(0)
    
    const double eps = 1e-8;
    const int mod = 1000000007;
    const int maxn = 2e5 + 7;
    const double pi = acos(-1);
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3fLL;
    
    int f[10], a[10][10];
    
    void mulself(int a[10][10]) {
        int c[10][10];
        memset(c, 0, sizeof(c));
        for(int i = 0; i < 3; i++) {
            for(int j = 0; j < 3; j++) {
                for(int k = 0; k < 3; k++) {
                    c[i][j] = (c[i][j] + (long long)a[i][k] * a[k][j] % (mod - 1)) % (mod - 1);
                }
            }
        }
        memcpy(a, c, sizeof(c));
    }
    
    void mul(int f[10], int a[10][10]) {
        int c[10];
        memset(c, 0, sizeof(c));
        for(int i = 0; i < 3; i++) {
            for(int j = 0; j < 3; j++) {
                c[i] = (c[i] + (long long)f[j] * a[j][i] % (mod - 1)) % (mod - 1);
            }
        }
        memcpy(f, c, sizeof(c));
    }
    
    void mulself1(int a[10][10]) {
        int c[10][10];
        memset(c, 0, sizeof(c));
        for(int i = 0; i < 5; i++) {
            for(int j = 0; j < 5; j++) {
                for(int k = 0; k < 5; k++) {
                    c[i][j] = (c[i][j] + (long long)a[i][k] * a[k][j] % (mod - 1)) % (mod - 1);
                }
            }
        }
        memcpy(a, c, sizeof(c));
    }
    
    void mul1(int f[10], int a[10][10]) {
        int c[10];
        memset(c, 0, sizeof(c));
        for(int i = 0; i < 5; i++) {
            for(int j = 0; j < 5; j++) {
                c[i] = (c[i] + (long long)f[j] * a[j][i] % (mod - 1)) % (mod - 1);
            }
        }
        memcpy(f, c, sizeof(c));
    }
    
    int qpow(int x, int n) {
        int res = 1;
        while(n) {
            if(n & 1) res = 1LL * res * x % mod;
            x = 1LL * x * x % mod;
            n >>= 1;
        }
        return res;
    }
    
    LL n;
    int f1, f2, f3, c;
    
    int main(){
        scanf("%lld%d%d%d%d", &n, &f1, &f2, &f3, &c);
        if(n == 1) return printf("%d
    ", f1) * 0;
        if(n == 2) return printf("%d
    ", f2) * 0;
        if(n == 3) return printf("%d
    ", f3) * 0;
        n -= 3;
        LL ans = 1;
        f[0] = 1, f[1] = 0, f[2] = 0;
        a[0][0] = 1, a[0][1] = 1, a[0][2] = 0;
        a[1][0] = 1, a[1][1] = 0, a[1][2] = 1;
        a[2][0] = 1, a[2][1] = 0, a[2][2] = 0;
        LL x = n;
        while(x) {
            if(x & 1) mul(f, a);
            mulself(a);
            x >>= 1;
        }
        ans = ans * qpow(f3, f[0]) % mod;
        f[0] = 0, f[1] = 1, f[2] = 0;
        a[0][0] = 1, a[0][1] = 1, a[0][2] = 0;
        a[1][0] = 1, a[1][1] = 0, a[1][2] = 1;
        a[2][0] = 1, a[2][1] = 0, a[2][2] = 0;
        x = n;
        while(x) {
            if(x & 1) mul(f, a);
            mulself(a);
            x >>= 1;
        }
        ans = ans * qpow(f2, f[0]) % mod;
        f[0] = 0, f[1] = 0, f[2] = 1;
        a[0][0] = 1, a[0][1] = 1, a[0][2] = 0;
        a[1][0] = 1, a[1][1] = 0, a[1][2] = 1;
        a[2][0] = 1, a[2][1] = 0, a[2][2] = 0;
        x = n;
        while(x) {
            if(x & 1) mul(f, a);
            mulself(a);
            x >>= 1;
        }
        ans = ans * qpow(f1, f[0]) % mod;
        if(n == 1) f[0] = 2;
        if(n == 2) f[0] = 6;
        if(n == 3) f[0] = 14;
        if(n > 3) {
            n -= 3;
            f[0] = 14, f[1] = 6, f[2] = 2, f[3] = 3, f[4] = 1;
            memset(a, 0, sizeof(a));
            a[0][0] = a[0][1] = 1;
            a[1][0] = a[1][2] = 1;
            a[2][0] = 1;
            a[3][0] = 2, a[3][3] = 1;
            a[4][0] = 2, a[4][3] = a[4][4] = 1;
            while(n) {
                if(n & 1) mul1(f, a);
                mulself1(a);
                n >>= 1;
            }
        }
        ans = ans * qpow(c, f[0]) % mod;
        printf("%lld
    ", ans);
        return 0;
    }
    
  • 相关阅读:
    Split Temporary Variable
    Introduce Explaining Variable
    Replace Temp with Query
    Extract Method
    自测代码的价值
    代码的坏味道
    Divergent Change & Shotgun Surgery
    Large Class
    Long Method
    Duplicated Code
  • 原文地址:https://www.cnblogs.com/Dillonh/p/11007112.html
Copyright © 2011-2022 走看看