题目链接
题面
题意
给你(n,k),要你求(sumlimits_{i=1}^{n}i^k)的值。
思路
根据数学知识或者说题目提示可知(sumlimits_{i=1}^{n}i^k)可以被一个(k+1)次多项式表示。
由拉格朗日插值法(推荐学习博客)的公式:(L(x)=l(x)sumlimits_{i=1}^{k+2}y_ifrac{w_i}{x-x_i}, ext{其中}l(x)=prodlimits_{i=1}^{k+2}(x-i),y_i=sumlimits_{j=1}^{i}j^k,w_i=prodlimits_{j=1,j
ot= i}^{n}frac{1}{x_i-x_j})可以得到结果。
由于本题的特殊性,可以将(w_i)进行化简:
[egin{aligned}
w_i&=prodlimits_{j=1,j
ot= i}^{n}frac{1}{x_i-x_j}&\
&=prodlimits_{j=1,j
ot= i}^{n}frac{1}{i-j}&\
&=frac{1}{(i-1)(i-2)*dots*1*(i-(i+1))dots(i-(k+2))}&\
&=(-1)^{k+2-i}frac{1}{(i-1)!(k+2-i)!}&
end{aligned}
]
因此我们可以通过(O(k+2))的复杂度得到(l(x),y_i,x-x_i),然后通过预处理阶乘的逆元我们可以(O((k+2)log(k+2)))得到(w_i),所以总复杂度为在(O((k+2)log(k+2)+(k+2)))左右。
代码实现如下
#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define lson rt<<1
#define rson rt<<1|1
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********
")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
#define FIN freopen("D://Code//in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0)
const double eps = 1e-8;
const int mod = 1000000007;
const int maxn = 1e6 + 7;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL;
int n, k, pp;
int A[maxn], y[maxn], inv[maxn], w[maxn];
int qpow(int x, int n) {
int res = 1;
while(n) {
if(n & 1) res = 1LL * res * x % mod;
x = 1LL * x * x % mod;
n >>= 1;
}
return res;
}
void init() {
A[0] = pp = 1;
for(int i = 1; i <= min(n, k + 2); ++i) {
A[i] = 1LL * A[i-1] * i % mod;
inv[i] = qpow(n - i, mod - 2);
pp = (1LL * pp * (n - i) % mod + mod) % mod;
y[i] = (y[i-1] + qpow(i, k)) % mod;
}
for(int i = 1; i <= min(n, k + 2); ++i) {
w[i] = 1LL * A[i-1] * A[k+2-i] % mod;
if((k + 2 - i) & 1) w[i] = mod - w[i];
w[i] = qpow(w[i], mod - 2);
}
}
int main() {
scanf("%d%d", &n, &k);
init();
if(n <= k + 2) return printf("%d
", y[n]) * 0;
int ans = 0;
for(int i = 1; i <= (k + 2); ++i) {
ans = (ans + 1LL * pp * y[i] % mod * w[i] % mod * inv[i] % mod) % mod;
}
printf("%d
", ans);
return 0;
}