zoukankan      html  css  js  c++  java
  • Farey Sequence (欧拉函数+前缀和)

    题目链接:http://poj.org/problem?id=2478

    Description

    The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are
    F2 = {1/2}
    F3 = {1/3, 1/2, 2/3}
    F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
    F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}

    You task is to calculate the number of terms in the Farey sequence Fn.

    Input

    There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 106). There are no blank lines between cases. A line with a single 0 terminates the input.

    Output

    For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn.

    Sample Input

    2
    3
    4
    5
    0

    Sample Output

    1
    3
    5
    9

    思路:由a / b,gcd(a,b)=1知,当前f(n)是在f(n - 1)的基础上加上以n为分母,与n互质的数为分子的分数,所以f(n)比f(n - 1)增加了1~n内与n互质的数的个数,现在题意就很明显了,就是要求欧拉函数,不过需要一个前缀和。
    代码实现如下:
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <iostream>
     4 using namespace std;
     5 
     6 #define debug(x) cout <<'[' <<x <<']' <<endl;
     7 const int maxn = 1e6 + 7;
     8 int n, m;
     9 int v[maxn], p[maxn], phi[maxn];
    10 long long sum[maxn];
    11 
    12 void euler() {
    13     m = 0;
    14     memset(v, 0, sizeof(v));
    15     memset(sum, 0, sizeof(sum));
    16     for(int i = 2; i < maxn; i++) {
    17         if(v[i] == 0) {
    18             v[i] = i;
    19             p[m++] = i;
    20             phi[i] = i - 1;
    21         }
    22         for(int j = 0; j < m; j++) {
    23             if(p[j] > v[i] || p[j] > maxn / i) break;
    24             v[i * p[j]] = p[j];
    25             phi[i * p[j]] = phi[i] * (i % p[j] ? p[j] - 1 : p[j]);
    26         }
    27     }
    28     phi[0] = phi[1] = 0;
    29     for(int i = 1; i < maxn; i++) {
    30         sum[i] = sum[i - 1] + phi[i];
    31     }
    32 }
    33 
    34 int main() {
    35     euler();
    36     while(~scanf("%d", &n) && n) {
    37 //        debug(phi[n]);
    38         printf("%lld
    ", sum[n]);
    39     }
    40 }
  • 相关阅读:
    老王python博客
    python中文分词
    python 字典(dict)get方法应用
    python yield和generators(生成器)
    python ASCII返回对应的值(chr)
    python 字符串特点
    python 包的定义,结构,导入过程
    fabric的安装和配置
    python 正则表达式re findall
    python unittest单元测试方法和用例
  • 原文地址:https://www.cnblogs.com/Dillonh/p/8877863.html
Copyright © 2011-2022 走看看