zoukankan      html  css  js  c++  java
  • CRB and Candies(组合数学+求逆元+lcm)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5407

    题目:

    Problem Description
    CRB has N different candies. He is going to eat K candies.
    He wonders how many combinations he can select.
    Can you answer his question for all K(0 ≤ KN)?
    CRB is too hungry to check all of your answers one by one, so he only asks least common multiple(LCM) of all answers.
     
    Input
    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case there is one line containing a single integer N.
    1 ≤ T ≤ 300
    1 ≤ N106
     
    Output
    For each test case, output a single integer – LCM modulo 1000000007(109+7).
     
    Sample Input
    5 1 2 3 4 5
     
    Sample Output
    1 2 3 12 10
     
    题意:求C(n,0) ~C(n,n)的最小公倍数。
    思路:结果是1~(n+1)的最小公倍数除以n+1,证明过程请按传送门~对于求1~n+1的最小公倍数其实就是将所有1~n+1内的所有素数的最大的落在该区间内的幂次相乘即可~
    代码实现如下:
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <iostream>
     4 using namespace std;
     5 
     6 typedef long long ll;
     7 const int maxn = 1e6 + 7;
     8 const int mod = 1e9 + 7;
     9 int t, n, len;
    10 int p[maxn], is_prime[maxn];
    11 
    12 void init() {
    13     len = 0;
    14     for (int i = 0; i < maxn; i++) {
    15         p[i] = 1;
    16     }
    17     p[0] = p[1] = 0;
    18     for (int i = 2; i * i < maxn; i++) {
    19         if (p[i]) {
    20             for (int j = i * i; j < maxn; j += i) {
    21                 p[j] = 0;
    22             }
    23         }
    24     }
    25     for(int i = 2; i < maxn; i++) {
    26         if(p[i]) {
    27             is_prime[len++] = i;
    28         }
    29     }
    30 }
    31 
    32 ll ModPow(ll x, ll p) {
    33     ll rec = 1;
    34     while (p) {
    35         if (p & 1) rec = (ll) rec * x % mod;
    36         x = (ll) x * x % mod;
    37         p >>= 1;
    38     }
    39     return rec;
    40 }
    41 
    42 int main() {
    43     init();
    44     cin >> t;
    45     while (t--) {
    46         cin >> n;
    47         ll ans = 1, tmp;
    48         n++;
    49         for (int i = 0; i < len && is_prime[i] <= n; i++) {
    50             tmp = 1;
    51             while (tmp * is_prime[i] <= n) {
    52                 tmp = tmp * is_prime[i];
    53             }
    54             ans = ans * tmp % mod;
    55         }
    56         cout << (ans * ModPow(n, mod - 2) % mod) << endl;
    57     }
    58     return 0;
    59 }
  • 相关阅读:
    整数划分递归模板
    最近点对算法模板
    计算几何模板
    poj1269---直线位置关系
    poj1017----模拟
    MVC 提交List 集合 注意对应的参数名称
    使用 WebClient 來存取 GET,POST,PUT,DELETE,PATCH 網路資源
    对路径访问拒绝,要加上具体filename/c.png
    sql 列集合
    百度地图 Infowidow 内容(content 下标签) 点击事件
  • 原文地址:https://www.cnblogs.com/Dillonh/p/8990601.html
Copyright © 2011-2022 走看看