zoukankan      html  css  js  c++  java
  • CRB and Candies(组合数学+求逆元+lcm)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5407

    题目:

    Problem Description
    CRB has N different candies. He is going to eat K candies.
    He wonders how many combinations he can select.
    Can you answer his question for all K(0 ≤ KN)?
    CRB is too hungry to check all of your answers one by one, so he only asks least common multiple(LCM) of all answers.
     
    Input
    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case there is one line containing a single integer N.
    1 ≤ T ≤ 300
    1 ≤ N106
     
    Output
    For each test case, output a single integer – LCM modulo 1000000007(109+7).
     
    Sample Input
    5 1 2 3 4 5
     
    Sample Output
    1 2 3 12 10
     
    题意:求C(n,0) ~C(n,n)的最小公倍数。
    思路:结果是1~(n+1)的最小公倍数除以n+1,证明过程请按传送门~对于求1~n+1的最小公倍数其实就是将所有1~n+1内的所有素数的最大的落在该区间内的幂次相乘即可~
    代码实现如下:
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <iostream>
     4 using namespace std;
     5 
     6 typedef long long ll;
     7 const int maxn = 1e6 + 7;
     8 const int mod = 1e9 + 7;
     9 int t, n, len;
    10 int p[maxn], is_prime[maxn];
    11 
    12 void init() {
    13     len = 0;
    14     for (int i = 0; i < maxn; i++) {
    15         p[i] = 1;
    16     }
    17     p[0] = p[1] = 0;
    18     for (int i = 2; i * i < maxn; i++) {
    19         if (p[i]) {
    20             for (int j = i * i; j < maxn; j += i) {
    21                 p[j] = 0;
    22             }
    23         }
    24     }
    25     for(int i = 2; i < maxn; i++) {
    26         if(p[i]) {
    27             is_prime[len++] = i;
    28         }
    29     }
    30 }
    31 
    32 ll ModPow(ll x, ll p) {
    33     ll rec = 1;
    34     while (p) {
    35         if (p & 1) rec = (ll) rec * x % mod;
    36         x = (ll) x * x % mod;
    37         p >>= 1;
    38     }
    39     return rec;
    40 }
    41 
    42 int main() {
    43     init();
    44     cin >> t;
    45     while (t--) {
    46         cin >> n;
    47         ll ans = 1, tmp;
    48         n++;
    49         for (int i = 0; i < len && is_prime[i] <= n; i++) {
    50             tmp = 1;
    51             while (tmp * is_prime[i] <= n) {
    52                 tmp = tmp * is_prime[i];
    53             }
    54             ans = ans * tmp % mod;
    55         }
    56         cout << (ans * ModPow(n, mod - 2) % mod) << endl;
    57     }
    58     return 0;
    59 }
  • 相关阅读:
    Tinkoff Challenge
    Uva 12298 超级扑克2
    BZOJ 1031 字符加密
    HDU 4944 逆序数对
    51nod 1215 数组的宽度
    LA 3126 出租车
    LA 3415 保守的老师
    51nod 1275 连续子段的差异
    Uva 11419 我是SAM
    LA 4043 最优匹配
  • 原文地址:https://www.cnblogs.com/Dillonh/p/8990601.html
Copyright © 2011-2022 走看看