zoukankan      html  css  js  c++  java
  • 用Hadoop构建电影推荐系统

    转自:http://blog.fens.me/hadoop-mapreduce-recommend/

    Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等。

    从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘。开源界及厂商,所有数据软件,无一不向Hadoop靠拢。Hadoop也从小众的高富帅领域,变成了大数据开发的标准。在Hadoop原有技术基础之上,出现了Hadoop家族产品,通过“大数据”概念不断创新,推出科技进步。

    作为IT界的开发人员,我们也要跟上节奏,抓住机遇,跟着Hadoop一起雄起!

    关于作者:

    • 张丹(Conan), 程序员Java,R,PHP,Javascript
    • weibo:@Conan_Z
    • blog: http://blog.fens.me
    • email: bsspirit@gmail.com

    转载请注明出处:
    http://blog.fens.me/hadoop-mapreduce-recommend/

    hadoop-recommand

    前言

    Netflix电影推荐的百万美金比赛,把“推荐”变成了时下最热门的数据挖掘算法之一。也正是由于Netflix的比赛,让企业界和学科界有了更深层次的技术碰撞。引发了各种网站“推荐”热,个性时代已经到来。

    目录

    1. 推荐系统概述
    2. 需求分析:推荐系统指标设计
    3. 算法模型:Hadoop并行算法
    4. 架构设计:推荐系统架构
    5. 程序开发:MapReduce程序实现

    1. 推荐系统概述

    电子商务网站是个性化推荐系统重要地应用的领域之一,亚马逊就是个性化推荐系统的积极应用者和推广者,亚马逊的推荐系统深入到网站的各类商品,为亚马逊带来了至少30%的销售额。

    不光是电商类,推荐系统无处不在。QQ,人人网的好友推荐;新浪微博的你可能感觉兴趣的人;优酷,土豆的电影推荐;豆瓣的图书推荐;大从点评的餐饮推荐;世纪佳缘的相亲推荐;天际网的职业推荐等。

    推荐算法分类:

    按数据使用划分:

    • 协同过滤算法:UserCF, ItemCF, ModelCF
    • 基于内容的推荐: 用户内容属性和物品内容属性
    • 社会化过滤:基于用户的社会网络关系

    按模型划分:

    • 最近邻模型:基于距离的协同过滤算法
    • Latent Factor Mode(SVD):基于矩阵分解的模型
    • Graph:图模型,社会网络图模型

    基于用户的协同过滤算法UserCF

    基于用户的协同过滤,通过不同用户对物品的评分来评测用户之间的相似性,基于用户之间的相似性做出推荐。简单来讲就是:给用户推荐和他兴趣相似的其他用户喜欢的物品。

    用例说明:

    image015

    算法实现及使用介绍,请参考文章:Mahout推荐算法API详解

    基于物品的协同过滤算法ItemCF

    基于item的协同过滤,通过用户对不同item的评分来评测item之间的相似性,基于item之间的相似性做出推荐。简单来讲就是:给用户推荐和他之前喜欢的物品相似的物品。

    用例说明:

    image017

    算法实现及使用介绍,请参考文章:Mahout推荐算法API详解

    注:基于物品的协同过滤算法,是目前商用最广泛的推荐算法。

    协同过滤算法实现,分为2个步骤

    • 1. 计算物品之间的相似度
    • 2. 根据物品的相似度和用户的历史行为给用户生成推荐列表

    有关协同过滤的另一篇文章,请参考:RHadoop实践系列之三 R实现MapReduce的协同过滤算法

    2. 需求分析:推荐系统指标设计

    下面我们将从一个公司案例出发来全面的解释,如何进行推荐系统指标设计。

    案例介绍

    Netflix电影推荐百万奖金比赛,http://www.netflixprize.com/
    Netflix官方网站:www.netflix.com

    Netflix,2006年组织比赛是的时候,是一家以在线电影租赁为生的公司。他们根据网友对电影的打分来判断用户有可能喜欢什么电影,并结合会员看过的电影以及口味偏好设置做出判断,混搭出各种电影风格的需求。

    收集会员的一些信息,为他们指定个性化的电影推荐后,有许多冷门电影竟然进入了候租榜单。从公司的电影资源成本方面考量,热门电影的成本一般较高,如果Netflix公司能够在电影租赁中增加冷门电影的比例,自然能够提升自身盈利能力。

    Netflix公司曾宣称60%左右的会员根据推荐名单定制租赁顺序,如果推荐系统不能准确地猜测会员喜欢的电影类型,容易造成多次租借冷门电影而并不符合个人口味的会员流失。为了更高效地为会员推荐电影,Netflix一直致力于不断改进和完善个性化推荐服务,在2006年推出百万美元大奖,无论是谁能最好地优化Netflix推荐算法就可获奖励100万美元。到2009年,奖金被一个7人开发小组夺得,Netflix随后又立即推出第二个百万美金悬赏。这充分说明一套好的推荐算法系统是多么重要,同时又是多么困难。

    netflix_prize

    上图为比赛的各支队伍的排名!

    补充说明:

    • 1. Netflix的比赛是基于静态数据的,就是给定“训练级”,匹配“结果集”,“结果集”也是提前就做好的,所以这与我们每天运营的系统,其实是不一样的。
    • 2. Netflix用于比赛的数据集是小量的,整个全集才666MB,而实际的推荐系统都要基于大量历史数据的,动不动就会上GB,TB等

    Netflix数据下载
    部分训练集:http://graphlab.org/wp-content/uploads/2013/07/smallnetflix_mm.train_.gz
    部分结果集:http://graphlab.org/wp-content/uploads/2013/07/smallnetflix_mm.validate.gz
    完整数据集:http://www.lifecrunch.biz/wp-content/uploads/2011/04/nf_prize_dataset.tar.gz

    所以,我们在真实的环境中设计推荐的时候,要全面考量数据量,算法性能,结果准确度等的指标。

    • 推荐算法选型:基于物品的协同过滤算法ItemCF,并行实现
    • 数据量:基于Hadoop架构,支持GB,TB,PB级数据量
    • 算法检验:可以通过 准确率,召回率,覆盖率,流行度 等指标评判。
    • 结果解读:通过ItemCF的定义,合理给出结果解释

    3. 算法模型:Hadoop并行算法

    这里我使用”Mahout In Action”书里,第一章第六节介绍的分步式基于物品的协同过滤算法进行实现。Chapter 6: Distributing recommendation computations

    测试数据集:small.csv

    
    1,101,5.0
    1,102,3.0
    1,103,2.5
    2,101,2.0
    2,102,2.5
    2,103,5.0
    2,104,2.0
    3,101,2.0
    3,104,4.0
    3,105,4.5
    3,107,5.0
    4,101,5.0
    4,103,3.0
    4,104,4.5
    4,106,4.0
    5,101,4.0
    5,102,3.0
    5,103,2.0
    5,104,4.0
    5,105,3.5
    5,106,4.0
    

    每行3个字段,依次是用户ID,电影ID,用户对电影的评分(0-5分,每0.5为一个评分点!)

    算法的思想:

    • 1. 建立物品的同现矩阵
    • 2. 建立用户对物品的评分矩阵
    • 3. 矩阵计算推荐结果

    1). 建立物品的同现矩阵
    按用户分组,找到每个用户所选的物品,单独出现计数及两两一组计数。

    
          [101] [102] [103] [104] [105] [106] [107]
    [101]   5     3     4     4     2     2     1
    [102]   3     3     3     2     1     1     0
    [103]   4     3     4     3     1     2     0
    [104]   4     2     3     4     2     2     1
    [105]   2     1     1     2     2     1     1
    [106]   2     1     2     2     1     2     0
    [107]   1     0     0     1     1     0     1
    

    2). 建立用户对物品的评分矩阵
    按用户分组,找到每个用户所选的物品及评分

    
           U3
    [101] 2.0
    [102] 0.0
    [103] 0.0
    [104] 4.0
    [105] 4.5
    [106] 0.0
    [107] 5.0
    

    3). 矩阵计算推荐结果
    同现矩阵*评分矩阵=推荐结果

    alogrithm_1

    图片摘自”Mahout In Action”

    MapReduce任务设计

    aglorithm_2

    图片摘自”Mahout In Action”

    解读MapRduce任务:

    • 步骤1: 按用户分组,计算所有物品出现的组合列表,得到用户对物品的评分矩阵
    • 步骤2: 对物品组合列表进行计数,建立物品的同现矩阵
    • 步骤3: 合并同现矩阵和评分矩阵
    • 步骤4: 计算推荐结果列表

    4. 架构设计:推荐系统架构

    hadoop-recommand-architect

    上图中,左边是Application业务系统,右边是Hadoop的HDFS, MapReduce。

    1. 业务系统记录了用户的行为和对物品的打分
    2. 设置系统定时器CRON,每xx小时,增量向HDFS导入数据(userid,itemid,value,time)。
    3. 完成导入后,设置系统定时器,启动MapReduce程序,运行推荐算法。
    4. 完成计算后,设置系统定时器,从HDFS导出推荐结果数据到数据库,方便以后的及时查询。

    5. 程序开发:MapReduce程序实现

    win7的开发环境 和 Hadoop的运行环境 ,请参考文章:用Maven构建Hadoop项目

    新建Java类:

    • Recommend.java,主任务启动程序
    • Step1.java,按用户分组,计算所有物品出现的组合列表,得到用户对物品的评分矩阵
    • Step2.java,对物品组合列表进行计数,建立物品的同现矩阵
    • Step3.java,合并同现矩阵和评分矩阵
    • Step4.java,计算推荐结果列表
    • HdfsDAO.java,HDFS操作工具类

    1). Recommend.java,主任务启动程序
    源代码:

    
    package org.conan.myhadoop.recommend;
    
    import java.util.HashMap;
    import java.util.Map;
    import java.util.regex.Pattern;
    
    import org.apache.hadoop.mapred.JobConf;
    
    public class Recommend {
    
        public static final String HDFS = "hdfs://192.168.1.210:9000";
        public static final Pattern DELIMITER = Pattern.compile("[	,]");
    
        public static void main(String[] args) throws Exception {
            Map<String, String> path = new HashMap<String, String>();
            path.put("data", "logfile/small.csv");
            path.put("Step1Input", HDFS + "/user/hdfs/recommend");
            path.put("Step1Output", path.get("Step1Input") + "/step1");
            path.put("Step2Input", path.get("Step1Output"));
            path.put("Step2Output", path.get("Step1Input") + "/step2");
            path.put("Step3Input1", path.get("Step1Output"));
            path.put("Step3Output1", path.get("Step1Input") + "/step3_1");
            path.put("Step3Input2", path.get("Step2Output"));
            path.put("Step3Output2", path.get("Step1Input") + "/step3_2");
            path.put("Step4Input1", path.get("Step3Output1"));
            path.put("Step4Input2", path.get("Step3Output2"));
            path.put("Step4Output", path.get("Step1Input") + "/step4");
    
            Step1.run(path);
            Step2.run(path);
            Step3.run1(path);
            Step3.run2(path);
            Step4.run(path);
            System.exit(0);
        }
    
        public static JobConf config() {
            JobConf conf = new JobConf(Recommend.class);
            conf.setJobName("Recommend");
            conf.addResource("classpath:/hadoop/core-site.xml");
            conf.addResource("classpath:/hadoop/hdfs-site.xml");
            conf.addResource("classpath:/hadoop/mapred-site.xml");
            return conf;
        }
    
    }
    

    2). Step1.java,按用户分组,计算所有物品出现的组合列表,得到用户对物品的评分矩阵

    源代码:

    
    package org.conan.myhadoop.recommend;
    
    import java.io.IOException;
    import java.util.Iterator;
    import java.util.Map;
    
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapred.FileInputFormat;
    import org.apache.hadoop.mapred.FileOutputFormat;
    import org.apache.hadoop.mapred.JobClient;
    import org.apache.hadoop.mapred.JobConf;
    import org.apache.hadoop.mapred.MapReduceBase;
    import org.apache.hadoop.mapred.Mapper;
    import org.apache.hadoop.mapred.OutputCollector;
    import org.apache.hadoop.mapred.Reducer;
    import org.apache.hadoop.mapred.Reporter;
    import org.apache.hadoop.mapred.RunningJob;
    import org.apache.hadoop.mapred.TextInputFormat;
    import org.apache.hadoop.mapred.TextOutputFormat;
    import org.conan.myhadoop.hdfs.HdfsDAO;
    
    public class Step1 {
    
        public static class Step1_ToItemPreMapper extends MapReduceBase implements Mapper<Object, Text, IntWritable, Text> {
            private final static IntWritable k = new IntWritable();
            private final static Text v = new Text();
    
            @Override
            public void map(Object key, Text value, OutputCollector<IntWritable, Text> output, Reporter reporter) throws IOException {
                String[] tokens = Recommend.DELIMITER.split(value.toString());
                int userID = Integer.parseInt(tokens[0]);
                String itemID = tokens[1];
                String pref = tokens[2];
                k.set(userID);
                v.set(itemID + ":" + pref);
                output.collect(k, v);
            }
        }
    
        public static class Step1_ToUserVectorReducer extends MapReduceBase implements Reducer<IntWritable, Text, IntWritable, Text> {
            private final static Text v = new Text();
    
            @Override
            public void reduce(IntWritable key, Iterator values, OutputCollector<IntWritable, Text> output, Reporter reporter) throws IOException {
                StringBuilder sb = new StringBuilder();
                while (values.hasNext()) {
                    sb.append("," + values.next());
                }
                v.set(sb.toString().replaceFirst(",", ""));
                output.collect(key, v);
            }
        }
    
        public static void run(Map<String, String> path) throws IOException {
            JobConf conf = Recommend.config();
    
            String input = path.get("Step1Input");
            String output = path.get("Step1Output");
    
            HdfsDAO hdfs = new HdfsDAO(Recommend.HDFS, conf);
            hdfs.rmr(input);
            hdfs.mkdirs(input);
            hdfs.copyFile(path.get("data"), input);
    
            conf.setMapOutputKeyClass(IntWritable.class);
            conf.setMapOutputValueClass(Text.class);
    
            conf.setOutputKeyClass(IntWritable.class);
            conf.setOutputValueClass(Text.class);
    
            conf.setMapperClass(Step1_ToItemPreMapper.class);
            conf.setCombinerClass(Step1_ToUserVectorReducer.class);
            conf.setReducerClass(Step1_ToUserVectorReducer.class);
    
            conf.setInputFormat(TextInputFormat.class);
            conf.setOutputFormat(TextOutputFormat.class);
    
            FileInputFormat.setInputPaths(conf, new Path(input));
            FileOutputFormat.setOutputPath(conf, new Path(output));
    
            RunningJob job = JobClient.runJob(conf);
            while (!job.isComplete()) {
                job.waitForCompletion();
            }
        }
    
    }
    
    

    计算结果:

    
    ~ hadoop fs -cat /user/hdfs/recommend/step1/part-00000
    
    1       102:3.0,103:2.5,101:5.0
    2       101:2.0,102:2.5,103:5.0,104:2.0
    3       107:5.0,101:2.0,104:4.0,105:4.5
    4       101:5.0,103:3.0,104:4.5,106:4.0
    5       101:4.0,102:3.0,103:2.0,104:4.0,105:3.5,106:4.0
    

    3). Step2.java,对物品组合列表进行计数,建立物品的同现矩阵
    源代码:

    
    package org.conan.myhadoop.recommend;
    
    import java.io.IOException;
    import java.util.Iterator;
    import java.util.Map;
    
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapred.FileInputFormat;
    import org.apache.hadoop.mapred.FileOutputFormat;
    import org.apache.hadoop.mapred.JobClient;
    import org.apache.hadoop.mapred.JobConf;
    import org.apache.hadoop.mapred.MapReduceBase;
    import org.apache.hadoop.mapred.Mapper;
    import org.apache.hadoop.mapred.OutputCollector;
    import org.apache.hadoop.mapred.Reducer;
    import org.apache.hadoop.mapred.Reporter;
    import org.apache.hadoop.mapred.RunningJob;
    import org.apache.hadoop.mapred.TextInputFormat;
    import org.apache.hadoop.mapred.TextOutputFormat;
    import org.conan.myhadoop.hdfs.HdfsDAO;
    
    public class Step2 {
        public static class Step2_UserVectorToCooccurrenceMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
            private final static Text k = new Text();
            private final static IntWritable v = new IntWritable(1);
    
            @Override
            public void map(LongWritable key, Text values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
                String[] tokens = Recommend.DELIMITER.split(values.toString());
                for (int i = 1; i < tokens.length; i++) {
                    String itemID = tokens[i].split(":")[0];
                    for (int j = 1; j < tokens.length; j++) {
                        String itemID2 = tokens[j].split(":")[0];
                        k.set(itemID + ":" + itemID2);
                        output.collect(k, v);
                    }
                }
            }
        }
    
        public static class Step2_UserVectorToConoccurrenceReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
            private IntWritable result = new IntWritable();
    
            @Override
            public void reduce(Text key, Iterator values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
                int sum = 0;
                while (values.hasNext()) {
                    sum += values.next().get();
                }
                result.set(sum);
                output.collect(key, result);
            }
        }
    
        public static void run(Map<String, String> path) throws IOException {
            JobConf conf = Recommend.config();
    
            String input = path.get("Step2Input");
            String output = path.get("Step2Output");
    
            HdfsDAO hdfs = new HdfsDAO(Recommend.HDFS, conf);
            hdfs.rmr(output);
    
            conf.setOutputKeyClass(Text.class);
            conf.setOutputValueClass(IntWritable.class);
    
            conf.setMapperClass(Step2_UserVectorToCooccurrenceMapper.class);
            conf.setCombinerClass(Step2_UserVectorToConoccurrenceReducer.class);
            conf.setReducerClass(Step2_UserVectorToConoccurrenceReducer.class);
    
            conf.setInputFormat(TextInputFormat.class);
            conf.setOutputFormat(TextOutputFormat.class);
    
            FileInputFormat.setInputPaths(conf, new Path(input));
            FileOutputFormat.setOutputPath(conf, new Path(output));
    
            RunningJob job = JobClient.runJob(conf);
            while (!job.isComplete()) {
                job.waitForCompletion();
            }
        }
    }
    
    

    计算结果:

    
    ~ hadoop fs -cat /user/hdfs/recommend/step2/part-00000
    
    101:101 5
    101:102 3
    101:103 4
    101:104 4
    101:105 2
    101:106 2
    101:107 1
    102:101 3
    102:102 3
    102:103 3
    102:104 2
    102:105 1
    102:106 1
    103:101 4
    103:102 3
    103:103 4
    103:104 3
    103:105 1
    103:106 2
    104:101 4
    104:102 2
    104:103 3
    104:104 4
    104:105 2
    104:106 2
    104:107 1
    105:101 2
    105:102 1
    105:103 1
    105:104 2
    105:105 2
    105:106 1
    105:107 1
    106:101 2
    106:102 1
    106:103 2
    106:104 2
    106:105 1
    106:106 2
    107:101 1
    107:104 1
    107:105 1
    107:107 1
    

    4). Step3.java,合并同现矩阵和评分矩阵
    源代码:

    
    package org.conan.myhadoop.recommend;
    
    import java.io.IOException;
    import java.util.Map;
    
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapred.FileInputFormat;
    import org.apache.hadoop.mapred.FileOutputFormat;
    import org.apache.hadoop.mapred.JobClient;
    import org.apache.hadoop.mapred.JobConf;
    import org.apache.hadoop.mapred.MapReduceBase;
    import org.apache.hadoop.mapred.Mapper;
    import org.apache.hadoop.mapred.OutputCollector;
    import org.apache.hadoop.mapred.Reporter;
    import org.apache.hadoop.mapred.RunningJob;
    import org.apache.hadoop.mapred.TextInputFormat;
    import org.apache.hadoop.mapred.TextOutputFormat;
    import org.conan.myhadoop.hdfs.HdfsDAO;
    
    public class Step3 {
    
        public static class Step31_UserVectorSplitterMapper extends MapReduceBase implements Mapper<LongWritable, Text, IntWritable, Text> {
            private final static IntWritable k = new IntWritable();
            private final static Text v = new Text();
    
            @Override
            public void map(LongWritable key, Text values, OutputCollector<IntWritable, Text> output, Reporter reporter) throws IOException {
                String[] tokens = Recommend.DELIMITER.split(values.toString());
                for (int i = 1; i < tokens.length; i++) {
                    String[] vector = tokens[i].split(":");
                    int itemID = Integer.parseInt(vector[0]);
                    String pref = vector[1];
    
                    k.set(itemID);
                    v.set(tokens[0] + ":" + pref);
                    output.collect(k, v);
                }
            }
        }
    
        public static void run1(Map<String, String> path) throws IOException {
            JobConf conf = Recommend.config();
    
            String input = path.get("Step3Input1");
            String output = path.get("Step3Output1");
    
            HdfsDAO hdfs = new HdfsDAO(Recommend.HDFS, conf);
            hdfs.rmr(output);
    
            conf.setOutputKeyClass(IntWritable.class);
            conf.setOutputValueClass(Text.class);
    
            conf.setMapperClass(Step31_UserVectorSplitterMapper.class);
    
            conf.setInputFormat(TextInputFormat.class);
            conf.setOutputFormat(TextOutputFormat.class);
    
            FileInputFormat.setInputPaths(conf, new Path(input));
            FileOutputFormat.setOutputPath(conf, new Path(output));
    
            RunningJob job = JobClient.runJob(conf);
            while (!job.isComplete()) {
                job.waitForCompletion();
            }
        }
    
        public static class Step32_CooccurrenceColumnWrapperMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
            private final static Text k = new Text();
            private final static IntWritable v = new IntWritable();
    
            @Override
            public void map(LongWritable key, Text values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
                String[] tokens = Recommend.DELIMITER.split(values.toString());
                k.set(tokens[0]);
                v.set(Integer.parseInt(tokens[1]));
                output.collect(k, v);
            }
        }
    
        public static void run2(Map<String, String> path) throws IOException {
            JobConf conf = Recommend.config();
    
            String input = path.get("Step3Input2");
            String output = path.get("Step3Output2");
    
            HdfsDAO hdfs = new HdfsDAO(Recommend.HDFS, conf);
            hdfs.rmr(output);
    
            conf.setOutputKeyClass(Text.class);
            conf.setOutputValueClass(IntWritable.class);
    
            conf.setMapperClass(Step32_CooccurrenceColumnWrapperMapper.class);
    
            conf.setInputFormat(TextInputFormat.class);
            conf.setOutputFormat(TextOutputFormat.class);
    
            FileInputFormat.setInputPaths(conf, new Path(input));
            FileOutputFormat.setOutputPath(conf, new Path(output));
    
            RunningJob job = JobClient.runJob(conf);
            while (!job.isComplete()) {
                job.waitForCompletion();
            }
        }
    
    }
    
    

    计算结果:

    
    ~ hadoop fs -cat /user/hdfs/recommend/step3_1/part-00000
    
    101     5:4.0
    101     1:5.0
    101     2:2.0
    101     3:2.0
    101     4:5.0
    102     1:3.0
    102     5:3.0
    102     2:2.5
    103     2:5.0
    103     5:2.0
    103     1:2.5
    103     4:3.0
    104     2:2.0
    104     5:4.0
    104     3:4.0
    104     4:4.5
    105     3:4.5
    105     5:3.5
    106     5:4.0
    106     4:4.0
    107     3:5.0
    
    ~ hadoop fs -cat /user/hdfs/recommend/step3_2/part-00000
    
    101:101 5
    101:102 3
    101:103 4
    101:104 4
    101:105 2
    101:106 2
    101:107 1
    102:101 3
    102:102 3
    102:103 3
    102:104 2
    102:105 1
    102:106 1
    103:101 4
    103:102 3
    103:103 4
    103:104 3
    103:105 1
    103:106 2
    104:101 4
    104:102 2
    104:103 3
    104:104 4
    104:105 2
    104:106 2
    104:107 1
    105:101 2
    105:102 1
    105:103 1
    105:104 2
    105:105 2
    105:106 1
    105:107 1
    106:101 2
    106:102 1
    106:103 2
    106:104 2
    106:105 1
    106:106 2
    107:101 1
    107:104 1
    107:105 1
    107:107 1
    

    5). Step4.java,计算推荐结果列表
    源代码:

    
    package org.conan.myhadoop.recommend;
    
    import java.io.IOException;
    import java.util.ArrayList;
    import java.util.HashMap;
    import java.util.Iterator;
    import java.util.List;
    import java.util.Map;
    
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapred.FileInputFormat;
    import org.apache.hadoop.mapred.FileOutputFormat;
    import org.apache.hadoop.mapred.JobClient;
    import org.apache.hadoop.mapred.JobConf;
    import org.apache.hadoop.mapred.MapReduceBase;
    import org.apache.hadoop.mapred.Mapper;
    import org.apache.hadoop.mapred.OutputCollector;
    import org.apache.hadoop.mapred.Reducer;
    import org.apache.hadoop.mapred.Reporter;
    import org.apache.hadoop.mapred.RunningJob;
    import org.apache.hadoop.mapred.TextInputFormat;
    import org.apache.hadoop.mapred.TextOutputFormat;
    import org.conan.myhadoop.hdfs.HdfsDAO;
    
    public class Step4 {
    
        public static class Step4_PartialMultiplyMapper extends MapReduceBase implements Mapper<LongWritable, Text, IntWritable, Text> {
            private final static IntWritable k = new IntWritable();
            private final static Text v = new Text();
    
            private final static Map<Integer, List> cooccurrenceMatrix = new HashMap<Integer, List>();
    
            @Override
            public void map(LongWritable key, Text values, OutputCollector<IntWritable, Text> output, Reporter reporter) throws IOException {
                String[] tokens = Recommend.DELIMITER.split(values.toString());
    
                String[] v1 = tokens[0].split(":");
                String[] v2 = tokens[1].split(":");
    
                if (v1.length > 1) {// cooccurrence
                    int itemID1 = Integer.parseInt(v1[0]);
                    int itemID2 = Integer.parseInt(v1[1]);
                    int num = Integer.parseInt(tokens[1]);
    
                    List list = null;
                    if (!cooccurrenceMatrix.containsKey(itemID1)) {
                        list = new ArrayList();
                    } else {
                        list = cooccurrenceMatrix.get(itemID1);
                    }
                    list.add(new Cooccurrence(itemID1, itemID2, num));
                    cooccurrenceMatrix.put(itemID1, list);
                }
    
                if (v2.length > 1) {// userVector
                    int itemID = Integer.parseInt(tokens[0]);
                    int userID = Integer.parseInt(v2[0]);
                    double pref = Double.parseDouble(v2[1]);
                    k.set(userID);
                    for (Cooccurrence co : cooccurrenceMatrix.get(itemID)) {
                        v.set(co.getItemID2() + "," + pref * co.getNum());
                        output.collect(k, v);
                    }
    
                }
            }
        }
    
        public static class Step4_AggregateAndRecommendReducer extends MapReduceBase implements Reducer<IntWritable, Text, IntWritable, Text> {
            private final static Text v = new Text();
    
            @Override
            public void reduce(IntWritable key, Iterator values, OutputCollector<IntWritable, Text> output, Reporter reporter) throws IOException {
                Map<String, Double> result = new HashMap<String, Double>();
                while (values.hasNext()) {
                    String[] str = values.next().toString().split(",");
                    if (result.containsKey(str[0])) {
                        result.put(str[0], result.get(str[0]) + Double.parseDouble(str[1]));
                    } else {
                        result.put(str[0], Double.parseDouble(str[1]));
                    }
                }
                Iterator iter = result.keySet().iterator();
                while (iter.hasNext()) {
                    String itemID = iter.next();
                    double score = result.get(itemID);
                    v.set(itemID + "," + score);
                    output.collect(key, v);
                }
            }
        }
    
        public static void run(Map<String, String> path) throws IOException {
            JobConf conf = Recommend.config();
    
            String input1 = path.get("Step4Input1");
            String input2 = path.get("Step4Input2");
            String output = path.get("Step4Output");
    
            HdfsDAO hdfs = new HdfsDAO(Recommend.HDFS, conf);
            hdfs.rmr(output);
    
            conf.setOutputKeyClass(IntWritable.class);
            conf.setOutputValueClass(Text.class);
    
            conf.setMapperClass(Step4_PartialMultiplyMapper.class);
            conf.setCombinerClass(Step4_AggregateAndRecommendReducer.class);
            conf.setReducerClass(Step4_AggregateAndRecommendReducer.class);
    
            conf.setInputFormat(TextInputFormat.class);
            conf.setOutputFormat(TextOutputFormat.class);
    
            FileInputFormat.setInputPaths(conf, new Path(input1), new Path(input2));
            FileOutputFormat.setOutputPath(conf, new Path(output));
    
            RunningJob job = JobClient.runJob(conf);
            while (!job.isComplete()) {
                job.waitForCompletion();
            }
        }
    
    }
    
    class Cooccurrence {
        private int itemID1;
        private int itemID2;
        private int num;
    
        public Cooccurrence(int itemID1, int itemID2, int num) {
            super();
            this.itemID1 = itemID1;
            this.itemID2 = itemID2;
            this.num = num;
        }
    
        public int getItemID1() {
            return itemID1;
        }
    
        public void setItemID1(int itemID1) {
            this.itemID1 = itemID1;
        }
    
        public int getItemID2() {
            return itemID2;
        }
    
        public void setItemID2(int itemID2) {
            this.itemID2 = itemID2;
        }
    
        public int getNum() {
            return num;
        }
    
        public void setNum(int num) {
            this.num = num;
        }
    
    }
    
    

    计算结果:

    
    ~ hadoop fs -cat /user/hdfs/recommend/step4/part-00000
    
    1       107,5.0
    1       106,18.0
    1       105,15.5
    1       104,33.5
    1       103,39.0
    1       102,31.5
    1       101,44.0
    2       107,4.0
    2       106,20.5
    2       105,15.5
    2       104,36.0
    2       103,41.5
    2       102,32.5
    2       101,45.5
    3       107,15.5
    3       106,16.5
    3       105,26.0
    3       104,38.0
    3       103,24.5
    3       102,18.5
    3       101,40.0
    4       107,9.5
    4       106,33.0
    4       105,26.0
    4       104,55.0
    4       103,53.5
    4       102,37.0
    4       101,63.0
    5       107,11.5
    5       106,34.5
    5       105,32.0
    5       104,59.0
    5       103,56.5
    5       102,42.5
    5       101,68.0
    

    6). HdfsDAO.java,HDFS操作工具类
    详细解释,请参考文章:Hadoop编程调用HDFS

    源代码:

    
    package org.conan.myhadoop.hdfs;
    
    import java.io.IOException;
    import java.net.URI;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FSDataOutputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IOUtils;
    import org.apache.hadoop.mapred.JobConf;
    
    public class HdfsDAO {
    
        private static final String HDFS = "hdfs://192.168.1.210:9000/";
    
        public HdfsDAO(Configuration conf) {
            this(HDFS, conf);
        }
    
        public HdfsDAO(String hdfs, Configuration conf) {
            this.hdfsPath = hdfs;
            this.conf = conf;
        }
    
        private String hdfsPath;
        private Configuration conf;
    
        public static void main(String[] args) throws IOException {
            JobConf conf = config();
            HdfsDAO hdfs = new HdfsDAO(conf);
            hdfs.copyFile("datafile/item.csv", "/tmp/new");
            hdfs.ls("/tmp/new");
        }        
    
        public static JobConf config(){
            JobConf conf = new JobConf(HdfsDAO.class);
            conf.setJobName("HdfsDAO");
            conf.addResource("classpath:/hadoop/core-site.xml");
            conf.addResource("classpath:/hadoop/hdfs-site.xml");
            conf.addResource("classpath:/hadoop/mapred-site.xml");
            return conf;
        }
    
        public void mkdirs(String folder) throws IOException {
            Path path = new Path(folder);
            FileSystem fs = FileSystem.get(URI.create(hdfsPath), conf);
            if (!fs.exists(path)) {
                fs.mkdirs(path);
                System.out.println("Create: " + folder);
            }
            fs.close();
        }
    
        public void rmr(String folder) throws IOException {
            Path path = new Path(folder);
            FileSystem fs = FileSystem.get(URI.create(hdfsPath), conf);
            fs.deleteOnExit(path);
            System.out.println("Delete: " + folder);
            fs.close();
        }
    
        public void ls(String folder) throws IOException {
            Path path = new Path(folder);
            FileSystem fs = FileSystem.get(URI.create(hdfsPath), conf);
            FileStatus[] list = fs.listStatus(path);
            System.out.println("ls: " + folder);
            System.out.println("==========================================================");
            for (FileStatus f : list) {
                System.out.printf("name: %s, folder: %s, size: %d
    ", f.getPath(), f.isDir(), f.getLen());
            }
            System.out.println("==========================================================");
            fs.close();
        }
    
        public void createFile(String file, String content) throws IOException {
            FileSystem fs = FileSystem.get(URI.create(hdfsPath), conf);
            byte[] buff = content.getBytes();
            FSDataOutputStream os = null;
            try {
                os = fs.create(new Path(file));
                os.write(buff, 0, buff.length);
                System.out.println("Create: " + file);
            } finally {
                if (os != null)
                    os.close();
            }
            fs.close();
        }
    
        public void copyFile(String local, String remote) throws IOException {
            FileSystem fs = FileSystem.get(URI.create(hdfsPath), conf);
            fs.copyFromLocalFile(new Path(local), new Path(remote));
            System.out.println("copy from: " + local + " to " + remote);
            fs.close();
        }
    
        public void download(String remote, String local) throws IOException {
            Path path = new Path(remote);
            FileSystem fs = FileSystem.get(URI.create(hdfsPath), conf);
            fs.copyToLocalFile(path, new Path(local));
            System.out.println("download: from" + remote + " to " + local);
            fs.close();
        }
    
        public void cat(String remoteFile) throws IOException {
            Path path = new Path(remoteFile);
            FileSystem fs = FileSystem.get(URI.create(hdfsPath), conf);
            FSDataInputStream fsdis = null;
            System.out.println("cat: " + remoteFile);
            try {  
                fsdis =fs.open(path);
                IOUtils.copyBytes(fsdis, System.out, 4096, false);  
              } finally {  
                IOUtils.closeStream(fsdis);
                fs.close();
              }
        }
    }
    

    这样我们就自己编程实现了MapReduce化基于物品的协同过滤算法。

    RHadoop的实现方案,请参考文章:RHadoop实践系列之三 R实现MapReduce的协同过滤算法

    Mahout的实现方案,请参考文章:Mahout分步式程序开发 基于物品的协同过滤ItemCF

    我已经把整个MapReduce的实现都放到了github上面:
    https://github.com/bsspirit/maven_hadoop_template/releases/tag/recommend

  • 相关阅读:
    cad.net修改视口比例
    cad.net添加和删除图层过滤器
    cad.net创建新图层
    cad.net创建浮动视口
    根据handle转换成ObjectId
    C#类型转换
    过滤选择集
    文字随线移动
    文字打断
    注册表应用示例
  • 原文地址:https://www.cnblogs.com/DjangoBlog/p/3558070.html
Copyright © 2011-2022 走看看