zoukankan      html  css  js  c++  java
  • Shark简介、部署及编译小结

    http://blog.csdn.net/pelick/article/details/11964291

    Shark简介

    Shark即Hive on Spark,本质上是通过Hive的HQL解析,把HQL翻译成Spark上的RDD操作,然后通过Hive的metadata获取数据库里的表信息,实际HDFS上的数据和文件,会由Shark获取并放到Spark上运算。Shark的特点就是快,完全兼容Hive,且可以在shell模式下使用rdd2sql()这样的API,把HQL得到的结果集,继续在scala环境下运算,支持自己编写简单的机器学习或简单分析处理函数,对HQL结果进一步分析计算。

    Shark速度快的原因除了Spark平台提供的基于内存迭代计算外,在设计上还存在对Spark上进行了一定的改造,主要有

      - partial DAG execution:对join优化,调节并行粒度,因为Spark本身的宽依赖和窄依赖会影响并行计算和速度

      - 基于列的压缩和存储:把HQL表数据按列存,每列是一个array,存在JVM上,避免了JVM GC低效,而压缩和解压相关的技术是Yahoo!提供的

    其他特性和设计要点请参看论文Shark: SQL and Rich Analytics at scale

    总结来说,Shark是一个插件式的东西,在我现有的Spark和Hive及hadoop-client之间,在这两套都可用的情况下,Shark只要获取Hive的配置(还有metastore和exec等关键包),Spark的路径,Shark就能利用Hive和Spark,把HQL解析成RDD的转换,把数据取到Spark上运算和分析。在SQL on Hadoop这块,Shark有别于Impala,Stringer,而这些系统各有自己的设计思路,相对于对MR进行优化和改进的思路,Shark的思路更加简单明了些。

    Shark部署

    Shark Wiki上发布了两个主要版本,shark-0.7.0-hadoop1-bin.tgz和shark-0.7.0-hadoop2-bin.tgz。shark-0.7.0-hadoop1-bin.tgz适用于CDH3,shark-0.7.0-hadoop2-bin.tgz适用于CDH4,他们都使用hive-0.9.0进行了编译,使用的Spark是0.7.2的。相对来说,hive的版本比较老,想要支持0.11.0这样更新的版本的话需要自己重新编译Shark。在github上,现在Shark的master分支已经开始支持未发布的Spark0.8版本,编译注意的地方会在下一节讲。

    Shark的部署参看https://github.com/amplab/shark/wiki/Running-Shark-on-a-Clusterhttps://github.com/amplab/shark/wiki/Running-Shark-Locally。首先要选择适合自己Hadoop集群版本的shark-0.7.0-hadoopX-bin.tgz

    解压出来的hive-0.9.0配置在shark-env.sh的HIVE_HOME,同时还可以额外指定HIVE_CONF的目录,一般就指定自己已有的可以连接hadoop的hive conf目录。其余的SPARK_MEM, SPARK_HOME, SCALA_HOME就不说了。

    用bin/shark-withinfo启动shark,可以看到INFO信息,shark首先启动自己的CLI,然后会启动Hive,再启动Spark,之后就可以用HQL测试Shark可用与否。

    在配置好各个HOME后,如果跑在common hadoop上,当你进行select这样和HDFS数据打交道的操作时,会报如下的版本错误

    [html] view plaincopy
     
    1. ERROR shark.SharkDriver: FAILED: Hive Internal Error: java.lang.RuntimeException(java.io.IOException: Failed on local exception: java.io.IOException: Response is null.; Host Details : local host is: "namenode.hadoop.game.yy.com/xxx.xxx.xx.xxx"; destination host is: "xxx.xxx.com":pppp;   

    具体见Shark Group的这个帖。目前,我尝试了很多也没有找到解决办法,特别是像我用的hadoop-client还是公司自己改装过的,相对的Hive的几个主要jar包(hive-metastore-xx, hive-exec-xx)也被改动了,导致不但shark发布的包不能直接使用,连使用shark重新根据自己的hive编译一遍都编译不过。

    最后再提醒几个可能发生的常见错误

    1. HIVE_HOME/lib下要有jdbc驱动包,比如mysql-driver的jar包,否则会报错。

    2. HIVE_HOME/lib下的hive-metastore-xx.jar,可能太旧,不适应自己的hadoop集群,可以替换成自己的hive/lib下的metastore包,否则会报错,HQL执行不成功。替换后至少在执行use db; show tables; 这样的HQL没有问题。

    3. 有一个错误是:

    [html] view plaincopy
     
    1. java.lang.UnsatisfiedLinkError: org.apache.hadoop.security.JniBasedUnixGroupsMapping.getGroupForUser(Ljava/lang/String;)[Ljava/lang/String;  

    后来我根据hadoop jira上的这个相似的问题https://issues.apache.org/jira/browse/HADOOP-9232,受到启发,解决方案是对shark目录下lib_manage/jars/org.apache.hadoop/hadoop-common内的jar包内的配置文件core-site.xml,去掉hadoop.security.group.mapping的相关配置,就OK了。

    Shark编译

    主要参考官方文档:https://github.com/amplab/shark/wiki/Building-Shark-from-Source-Code。在下载版本的时候,一定要注意下载配套的源码。我第一次编译的时候用了shark-master的源码,就编译失败了,因为它依赖Spark-0.8版本,而这版本还未发布。应该获取branch-0.7下的版本,

    [html] view plaincopy
     
    1. git clone https://github.com/amplab/shark.git -b branch-0.7 shark-0.7  

    除了指定下SCALA_HOME和HIVE_HOME外,最好再指定下SPARK_HOME。最后sbt/sbt package,利用sbt进行打包,需要蛮长的时间。

    我尝试了依赖公司的hive包编译,失败了,报了77个error,原因是Shark的源码里很多依赖于hive的接口,有些有,有些没有,所以我又尝试了依赖hive-0.9.0的包编译,成功了,没有报错。虽然我想尝试编译适合自己公司集群的shark失败了,但是我还是完成了这条路的探索。目前我如果想使用Shark的话,只能自己部一套CDH的hadoop和hive了。哎。

  • 相关阅读:
    Android 按键消息处理Android 按键消息处理
    objcopy
    SQLite多线程读写实践及常见问题总结
    android动画坐标定义
    Android动画效果translate、scale、alpha、rotate
    Android公共库(缓存 下拉ListView 下载管理Pro 静默安装 root运行 Java公共类)
    Flatten Binary Tree to Linked List
    Distinct Subsequences
    Populating Next Right Pointers in Each Node II
    Populating Next Right Pointers in Each Node
  • 原文地址:https://www.cnblogs.com/DjangoBlog/p/3678135.html
Copyright © 2011-2022 走看看